home / skills / personamanagmentlayer / pcl / finops-expert

This skill provides expert guidance on cloud financial operations, cost optimization, and budgeting to reduce spend and improve utilization.

npx playbooks add skill personamanagmentlayer/pcl --skill finops-expert

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
12.6 KB
---
name: finops-expert
version: 1.0.0
description: Expert-level cloud financial operations, cost optimization, and cloud economics
category: professional
tags: [finops, cloud-cost, optimization, cloud-economics, aws-cost]
allowed-tools:
  - Read
  - Write
  - Edit
  - Bash(*)
---

# FinOps Expert

Expert guidance for cloud financial operations, cost optimization, resource management, and cloud economics.

## Core Concepts

### FinOps Fundamentals
- Cloud cost visibility
- Usage optimization
- Rate optimization
- Architecture optimization
- Cloud unit economics
- Showback and chargeback

### Cost Management
- Reserved Instances (RIs)
- Savings Plans
- Spot instances
- Right-sizing resources
- Idle resource cleanup
- Storage lifecycle policies

### FinOps Practices
- Tagging strategies
- Budgets and alerts
- Cost allocation
- Forecasting and planning
- Cross-team collaboration
- Continuous optimization

## AWS Cost Analysis

```python
import boto3
from datetime import datetime, timedelta
from typing import Dict, List
import pandas as pd

class AWSCostAnalyzer:
    """Analyze AWS costs using Cost Explorer API"""

    def __init__(self):
        self.ce_client = boto3.client('ce')

    def get_cost_and_usage(self, start_date: str, end_date: str,
                          granularity: str = 'DAILY',
                          metrics: List[str] = None) -> Dict:
        """Get cost and usage data"""
        if metrics is None:
            metrics = ['UnblendedCost', 'UsageQuantity']

        response = self.ce_client.get_cost_and_usage(
            TimePeriod={
                'Start': start_date,
                'End': end_date
            },
            Granularity=granularity,
            Metrics=metrics,
            GroupBy=[
                {'Type': 'DIMENSION', 'Key': 'SERVICE'}
            ]
        )

        return response['ResultsByTime']

    def get_top_services_by_cost(self, days: int = 30, top_n: int = 10) -> pd.DataFrame:
        """Get top services by cost"""
        end_date = datetime.now().strftime('%Y-%m-%d')
        start_date = (datetime.now() - timedelta(days=days)).strftime('%Y-%m-%d')

        results = self.get_cost_and_usage(start_date, end_date, 'MONTHLY')

        service_costs = {}
        for result in results:
            for group in result['Groups']:
                service = group['Keys'][0]
                cost = float(group['Metrics']['UnblendedCost']['Amount'])

                if service in service_costs:
                    service_costs[service] += cost
                else:
                    service_costs[service] = cost

        df = pd.DataFrame(list(service_costs.items()),
                         columns=['Service', 'Cost'])
        return df.nlargest(top_n, 'Cost')

    def get_cost_forecast(self, days_ahead: int = 30) -> Dict:
        """Get cost forecast"""
        start_date = datetime.now().strftime('%Y-%m-%d')
        end_date = (datetime.now() + timedelta(days=days_ahead)).strftime('%Y-%m-%d')

        response = self.ce_client.get_cost_forecast(
            TimePeriod={
                'Start': start_date,
                'End': end_date
            },
            Metric='UNBLENDED_COST',
            Granularity='MONTHLY'
        )

        return {
            'forecasted_cost': float(response['Total']['Amount']),
            'mean_value': float(response['ForecastResultsByTime'][0]['MeanValue'])
        }

    def get_rightsizing_recommendations(self) -> List[Dict]:
        """Get EC2 rightsizing recommendations"""
        response = self.ce_client.get_rightsizing_recommendation(
            Service='AmazonEC2'
        )

        recommendations = []
        for rec in response['RightsizingRecommendations']:
            recommendations.append({
                'instance_id': rec['CurrentInstance']['ResourceId'],
                'current_type': rec['CurrentInstance']['InstanceType'],
                'recommended_type': rec['ModifyRecommendationDetail']['TargetInstances'][0]['InstanceType']
                    if rec.get('ModifyRecommendationDetail') else None,
                'estimated_savings': float(rec['EstimatedMonthlySavings']['Value'])
                    if rec.get('EstimatedMonthlySavings') else 0
            })

        return recommendations

class CostOptimizer:
    """Optimize cloud costs"""

    def __init__(self):
        self.ec2_client = boto3.client('ec2')
        self.rds_client = boto3.client('rds')
        self.s3_client = boto3.client('s3')

    def find_idle_resources(self) -> Dict[str, List]:
        """Find idle/unused resources"""
        idle_resources = {
            'ec2_instances': [],
            'ebs_volumes': [],
            'elastic_ips': [],
            'load_balancers': []
        }

        # Idle EC2 instances (stopped for > 7 days)
        instances = self.ec2_client.describe_instances(
            Filters=[{'Name': 'instance-state-name', 'Values': ['stopped']}]
        )

        for reservation in instances['Reservations']:
            for instance in reservation['Instances']:
                idle_resources['ec2_instances'].append({
                    'id': instance['InstanceId'],
                    'type': instance['InstanceType'],
                    'state': instance['State']['Name']
                })

        # Unattached EBS volumes
        volumes = self.ec2_client.describe_volumes(
            Filters=[{'Name': 'status', 'Values': ['available']}]
        )

        for volume in volumes['Volumes']:
            idle_resources['ebs_volumes'].append({
                'id': volume['VolumeId'],
                'size': volume['Size'],
                'type': volume['VolumeType']
            })

        # Unattached Elastic IPs
        addresses = self.ec2_client.describe_addresses()

        for address in addresses['Addresses']:
            if 'InstanceId' not in address:
                idle_resources['elastic_ips'].append({
                    'allocation_id': address['AllocationId'],
                    'public_ip': address['PublicIp']
                })

        return idle_resources

    def calculate_reserved_instance_savings(self,
                                           instance_type: str,
                                           count: int,
                                           term: int = 1) -> Dict:
        """Calculate RI savings"""
        # Simplified calculation (would use actual pricing API)
        on_demand_hourly = self._get_on_demand_price(instance_type)
        ri_hourly = on_demand_hourly * 0.65  # ~35% discount

        hours_per_year = 24 * 365
        annual_on_demand = on_demand_hourly * hours_per_year * count
        annual_ri = ri_hourly * hours_per_year * count

        return {
            'instance_type': instance_type,
            'count': count,
            'annual_on_demand_cost': annual_on_demand,
            'annual_ri_cost': annual_ri,
            'annual_savings': annual_on_demand - annual_ri,
            'savings_percentage': ((annual_on_demand - annual_ri) / annual_on_demand) * 100
        }

    def _get_on_demand_price(self, instance_type: str) -> float:
        """Get on-demand hourly price (simplified)"""
        # In production, use AWS Pricing API
        prices = {
            't3.micro': 0.0104,
            't3.small': 0.0208,
            't3.medium': 0.0416,
            'm5.large': 0.096,
            'm5.xlarge': 0.192
        }
        return prices.get(instance_type, 0.10)
```

## Cost Allocation and Tagging

```python
class CostAllocation:
    """Manage cost allocation with tags"""

    def __init__(self):
        self.ec2_client = boto3.client('ec2')
        self.ce_client = boto3.client('ce')

    def define_tagging_strategy(self) -> Dict[str, List[str]]:
        """Define mandatory tags"""
        return {
            'environment': ['prod', 'staging', 'dev'],
            'team': ['engineering', 'data', 'product'],
            'cost_center': ['CC001', 'CC002', 'CC003'],
            'project': ['project-a', 'project-b'],
            'owner': ['email addresses']
        }

    def audit_resource_tags(self, resource_type: str = 'instance') -> List[Dict]:
        """Audit resources for missing tags"""
        mandatory_tags = ['environment', 'team', 'cost_center']
        untagged_resources = []

        if resource_type == 'instance':
            instances = self.ec2_client.describe_instances()

            for reservation in instances['Reservations']:
                for instance in reservation['Instances']:
                    tags = {tag['Key']: tag['Value']
                           for tag in instance.get('Tags', [])}

                    missing_tags = [tag for tag in mandatory_tags
                                  if tag not in tags]

                    if missing_tags:
                        untagged_resources.append({
                            'resource_id': instance['InstanceId'],
                            'missing_tags': missing_tags
                        })

        return untagged_resources

    def get_cost_by_tag(self, tag_key: str, start_date: str,
                       end_date: str) -> pd.DataFrame:
        """Get costs grouped by tag"""
        response = self.ce_client.get_cost_and_usage(
            TimePeriod={
                'Start': start_date,
                'End': end_date
            },
            Granularity='MONTHLY',
            Metrics=['UnblendedCost'],
            GroupBy=[
                {'Type': 'TAG', 'Key': tag_key}
            ]
        )

        costs = []
        for result in response['ResultsByTime']:
            for group in result['Groups']:
                costs.append({
                    'tag_value': group['Keys'][0].split('$')[1]
                        if '$' in group['Keys'][0] else 'Untagged',
                    'cost': float(group['Metrics']['UnblendedCost']['Amount'])
                })

        return pd.DataFrame(costs)
```

## Budget Management

```python
class BudgetManager:
    """Manage AWS budgets and alerts"""

    def __init__(self):
        self.budgets_client = boto3.client('budgets')
        self.account_id = boto3.client('sts').get_caller_identity()['Account']

    def create_monthly_budget(self, name: str, amount: float,
                             email: str) -> Dict:
        """Create monthly cost budget with alerts"""
        budget = {
            'BudgetName': name,
            'BudgetLimit': {
                'Amount': str(amount),
                'Unit': 'USD'
            },
            'TimeUnit': 'MONTHLY',
            'BudgetType': 'COST'
        }

        # Alert at 80% and 100%
        notifications = [
            {
                'Notification': {
                    'NotificationType': 'ACTUAL',
                    'ComparisonOperator': 'GREATER_THAN',
                    'Threshold': 80,
                    'ThresholdType': 'PERCENTAGE'
                },
                'Subscribers': [{
                    'SubscriptionType': 'EMAIL',
                    'Address': email
                }]
            },
            {
                'Notification': {
                    'NotificationType': 'ACTUAL',
                    'ComparisonOperator': 'GREATER_THAN',
                    'Threshold': 100,
                    'ThresholdType': 'PERCENTAGE'
                },
                'Subscribers': [{
                    'SubscriptionType': 'EMAIL',
                    'Address': email
                }]
            }
        ]

        response = self.budgets_client.create_budget(
            AccountId=self.account_id,
            Budget=budget,
            NotificationsWithSubscribers=notifications
        )

        return response
```

## Best Practices

### Cost Visibility
- Implement comprehensive tagging
- Enable Cost Explorer
- Set up cost allocation tags
- Create custom cost reports
- Use dashboards for visualization
- Monitor costs daily

### Optimization
- Right-size resources regularly
- Use Reserved Instances/Savings Plans
- Leverage Spot instances for flexible workloads
- Implement auto-scaling
- Clean up idle resources
- Use storage lifecycle policies

### Governance
- Set budgets and alerts
- Implement approval workflows
- Regular cost reviews
- Cross-team accountability
- Document cost optimization wins
- Automate cost controls

## Anti-Patterns

❌ No tagging strategy
❌ Ignoring rightsizing recommendations
❌ Not using Reserved Instances
❌ No budget alerts
❌ Keeping idle resources
❌ Manual cost tracking
❌ Siloed cost responsibility

## Resources

- AWS Cost Explorer: https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
- FinOps Foundation: https://www.finops.org/
- AWS Well-Architected Cost Optimization: https://wa.aws.amazon.com/wat.pillar.costOptimization.en.html
- Boto3 Cost Explorer: https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ce.html

Overview

This skill provides expert-level guidance and tools for cloud financial operations, cost optimization, and cloud economics. It combines practical FinOps practices—visibility, rightsizing, reserved instance strategies, tagging, and governance—with actionable automation patterns for AWS. The goal is to reduce spend, improve predictability, and align cloud costs with business outcomes.

How this skill works

The skill inspects cost and usage data, identifies top-cost services, and generates forecasts and rightsizing recommendations using Cost Explorer patterns. It scans for idle or untagged resources, models reserved instance and savings-plan savings, and outlines tagging and budget controls. Outputs include prioritized optimization actions, cost-allocation reports, and alert-ready budget configurations.

When to use it

  • You need to reduce cloud spend without degrading performance.
  • Setting up cost allocation and governance for a growing cloud estate.
  • Preparing a budget and forecast for upcoming quarters.
  • Automating discovery and cleanup of idle or untagged resources.
  • Evaluating RI/Savings Plan trade-offs for long-running workloads.

Best practices

  • Implement a mandatory tagging strategy (environment, team, cost_center, project, owner) and enforce via automation.
  • Enable Cost Explorer, use allocation tags, and publish monthly dashboards for stakeholders.
  • Run rightsizing and idle-resource audits regularly; schedule automated cleanups for safe candidates.
  • Combine Reserved Instances/Savings Plans for stable workloads and Spot for flexible workloads.
  • Create budgets with 80% and 100% alerts, integrate approvals for overspend, and document optimization outcomes.

Example use cases

  • Weekly report listing top 10 services by cost and trend analysis for finance and engineering.
  • Automated audit that finds stopped instances, unattached volumes, and unused elastic IPs for cleanup.
  • Rightsizing recommendations for EC2 fleet and estimated annual savings with RI/Savings Plan modeling.
  • Tagging audit that returns resources missing mandatory tags and produces cost-by-tag reports for chargeback.
  • Monthly budget creation with email alerts at 80% and 100% of spend, tied to owner subscriptions.

FAQ

How accurate are savings estimates for Reserved Instances?

Estimates use on-demand pricing baselines and typical discount assumptions; for production accuracy, use the cloud provider pricing API and historical usage patterns.

Can this approach handle multi-cloud cost allocation?

The principles apply across clouds: enable provider billing APIs, standardize tagging, and centralize reporting. Provider-specific APIs or connectors are required for full automation.