home / skills / personamanagmentlayer / pcl / education
This skill provides expert guidance on education technology, LMS, and assessment tooling to optimize learning outcomes and platform effectiveness.
npx playbooks add skill personamanagmentlayer/pcl --skill educationReview the files below or copy the command above to add this skill to your agents.
---
name: education-expert
version: 1.0.0
description: Expert-level education technology, learning management systems, and ed-tech platforms
category: domains
tags: [education, edtech, lms, e-learning, assessment]
allowed-tools:
- Read
- Write
- Edit
---
# Education Expert
Expert guidance for education technology, learning management systems, online learning platforms, and educational software development.
## Core Concepts
### Educational Technology
- Learning Management Systems (LMS)
- Student Information Systems (SIS)
- Assessment and evaluation tools
- Adaptive learning platforms
- Virtual classrooms
- Content management
### Standards
- SCORM (Sharable Content Object Reference Model)
- xAPI (Experience API / Tin Can API)
- LTI (Learning Tools Interoperability)
- QTI (Question and Test Interoperability)
- Accessibility (WCAG, Section 508)
### Key Features
- Course management
- Grade tracking
- Student analytics
- Content delivery
- Collaborative tools
- Assessment engines
## LMS Core Implementation
```python
from dataclasses import dataclass
from typing import List, Optional
from datetime import datetime
from enum import Enum
class EnrollmentStatus(Enum):
ACTIVE = "active"
COMPLETED = "completed"
DROPPED = "dropped"
PENDING = "pending"
@dataclass
class Course:
course_id: str
title: str
description: str
instructor_id: str
start_date: datetime
end_date: datetime
credits: int
capacity: int
syllabus_url: str
prerequisites: List[str]
@dataclass
class Student:
student_id: str
first_name: str
last_name: str
email: str
enrolled_date: datetime
grade_level: str
gpa: float
@dataclass
class Enrollment:
enrollment_id: str
student_id: str
course_id: str
enrollment_date: datetime
status: EnrollmentStatus
final_grade: Optional[float]
class LMSPlatform:
"""Learning Management System core functionality"""
def __init__(self, db):
self.db = db
def enroll_student(self, student_id, course_id):
"""Enroll student in course"""
course = self.db.get_course(course_id)
current_enrollment = self.db.count_enrollments(course_id)
# Check capacity
if current_enrollment >= course.capacity:
raise Exception("Course is full")
# Check prerequisites
if course.prerequisites:
completed = self.get_completed_courses(student_id)
if not all(prereq in completed for prereq in course.prerequisites):
raise Exception("Prerequisites not met")
enrollment = Enrollment(
enrollment_id=generate_id(),
student_id=student_id,
course_id=course_id,
enrollment_date=datetime.now(),
status=EnrollmentStatus.ACTIVE,
final_grade=None
)
return self.db.save_enrollment(enrollment)
def get_student_transcript(self, student_id):
"""Generate student transcript"""
enrollments = self.db.get_student_enrollments(student_id)
transcript = []
for enrollment in enrollments:
if enrollment.status == EnrollmentStatus.COMPLETED:
course = self.db.get_course(enrollment.course_id)
transcript.append({
'course_code': course.course_id,
'course_name': course.title,
'credits': course.credits,
'grade': enrollment.final_grade,
'term': self.get_term(enrollment.enrollment_date)
})
return transcript
def calculate_gpa(self, student_id):
"""Calculate student GPA"""
transcript = self.get_student_transcript(student_id)
total_points = 0
total_credits = 0
for record in transcript:
if record['grade'] is not None:
total_points += record['grade'] * record['credits']
total_credits += record['credits']
return total_points / total_credits if total_credits > 0 else 0.0
```
## Assessment Engine
```python
from abc import ABC, abstractmethod
class Question(ABC):
"""Base question class"""
def __init__(self, question_id, text, points):
self.question_id = question_id
self.text = text
self.points = points
@abstractmethod
def check_answer(self, student_answer):
pass
class MultipleChoiceQuestion(Question):
"""Multiple choice question"""
def __init__(self, question_id, text, points, choices, correct_answer):
super().__init__(question_id, text, points)
self.choices = choices
self.correct_answer = correct_answer
def check_answer(self, student_answer):
return student_answer == self.correct_answer
class Essay Question(Question):
"""Essay question requiring manual grading"""
def __init__(self, question_id, text, points, rubric):
super().__init__(question_id, text, points)
self.rubric = rubric
def check_answer(self, student_answer):
# Requires manual grading
return None
class AssessmentEngine:
"""Assessment and grading system"""
def grade_assessment(self, assessment, student_answers):
"""Grade student assessment"""
total_points = 0
earned_points = 0
results = []
for question in assessment.questions:
total_points += question.points
student_answer = student_answers.get(question.question_id)
if isinstance(question, MultipleChoiceQuestion):
is_correct = question.check_answer(student_answer)
points_earned = question.points if is_correct else 0
earned_points += points_earned
results.append({
'question_id': question.question_id,
'correct': is_correct,
'points': points_earned,
'feedback': 'Correct!' if is_correct else f'Incorrect. Correct answer: {question.correct_answer}'
})
else:
# Essay questions need manual grading
results.append({
'question_id': question.question_id,
'status': 'pending_review',
'answer': student_answer
})
score_percentage = (earned_points / total_points) * 100 if total_points > 0 else 0
return {
'total_points': total_points,
'earned_points': earned_points,
'percentage': score_percentage,
'results': results
}
def analyze_assessment_statistics(self, assessment_id, all_submissions):
"""Analyze assessment performance"""
scores = [s['percentage'] for s in all_submissions]
return {
'mean': sum(scores) / len(scores),
'median': sorted(scores)[len(scores) // 2],
'min': min(scores),
'max': max(scores),
'std_dev': self.calculate_std_dev(scores)
}
```
## Learning Analytics
```python
class LearningAnalytics:
"""Student learning analytics"""
def get_student_engagement(self, student_id, course_id):
"""Calculate student engagement metrics"""
activities = self.db.get_student_activities(student_id, course_id)
metrics = {
'login_frequency': self.calculate_login_frequency(activities),
'content_completion_rate': self.calculate_completion_rate(activities),
'assessment_participation': self.calculate_participation(activities),
'forum_posts': len([a for a in activities if a['type'] == 'forum_post']),
'time_on_platform': sum(a['duration'] for a in activities)
}
return metrics
def predict_student_risk(self, student_id, course_id):
"""Predict at-risk students"""
engagement = self.get_student_engagement(student_id, course_id)
grades = self.get_recent_grades(student_id, course_id)
risk_score = 0
# Low engagement indicators
if engagement['login_frequency'] < 2: # Less than 2x per week
risk_score += 25
if engagement['content_completion_rate'] < 0.5:
risk_score += 25
if engagement['assessment_participation'] < 0.7:
risk_score += 25
# Grade indicators
if grades and sum(grades) / len(grades) < 60:
risk_score += 25
risk_level = 'high' if risk_score >= 75 else 'medium' if risk_score >= 50 else 'low'
return {
'student_id': student_id,
'risk_score': risk_score,
'risk_level': risk_level,
'recommendations': self.generate_interventions(risk_score, engagement)
}
def generate_learning_path(self, student_id, learning_goals):
"""Generate personalized learning path"""
# Analyze student's current knowledge
current_skills = self.assess_skills(student_id)
gap_analysis = self.identify_skill_gaps(current_skills, learning_goals)
# Recommend courses and resources
recommended_courses = self.match_courses_to_goals(gap_analysis)
return {
'student_id': student_id,
'current_level': current_skills,
'target_level': learning_goals,
'skill_gaps': gap_analysis,
'recommended_path': recommended_courses,
'estimated_duration': self.estimate_completion_time(recommended_courses)
}
```
## xAPI (Tin Can API) Integration
```python
import json
from datetime import datetime
class xAPIStatement:
"""xAPI statement builder"""
@staticmethod
def create_statement(actor, verb, object_data, result=None):
"""Create xAPI statement"""
statement = {
'actor': {
'objectType': 'Agent',
'name': actor['name'],
'mbox': f"mailto:{actor['email']}"
},
'verb': {
'id': verb['id'],
'display': {'en-US': verb['display']}
},
'object': {
'id': object_data['id'],
'definition': {
'name': {'en-US': object_data['name']},
'description': {'en-US': object_data.get('description', '')}
}
},
'timestamp': datetime.utcnow().isoformat()
}
if result:
statement['result'] = result
return statement
@staticmethod
def completed_course(student, course, score):
"""Create course completion statement"""
return xAPIStatement.create_statement(
actor={'name': student['name'], 'email': student['email']},
verb={
'id': 'http://adlnet.gov/expapi/verbs/completed',
'display': 'completed'
},
object_data={
'id': f"http://lms.example.com/course/{course['id']}",
'name': course['title']
},
result={
'score': {
'scaled': score / 100,
'raw': score,
'min': 0,
'max': 100
},
'completion': True,
'success': score >= 70
}
)
```
## Best Practices
- Implement accessibility standards (WCAG)
- Support mobile learning
- Enable offline access
- Provide real-time feedback
- Use adaptive learning algorithms
- Protect student data privacy (FERPA)
- Enable collaborative learning
- Provide detailed analytics
- Support multiple content formats
- Implement plagiarism detection
- Enable parent/guardian access
- Support multilingual content
## Anti-Patterns
❌ Poor mobile experience
❌ No accessibility features
❌ Ignoring data privacy
❌ No analytics or reporting
❌ Inflexible assessment tools
❌ No offline capabilities
❌ Poor user experience
## Resources
- SCORM: https://scorm.com/
- xAPI: https://xapi.com/
- LTI: https://www.imsglobal.org/activity/learning-tools-interoperability
- Moodle: https://moodle.org/
- Canvas LMS: https://www.instructure.com/canvas
- FERPA: https://www2.ed.gov/policy/gen/guid/fpco/ferpa/
This skill provides expert-level guidance for education technology, learning management systems (LMS), assessment engines, learning analytics, and xAPI integration. It targets architects, product managers, developers, and education leaders building or improving ed-tech platforms. The content combines practical patterns, implementation sketches, standards advice, and operational best practices.
The skill inspects core LMS concerns: course and enrollment lifecycle, grading and transcript generation, assessment grading flows, and analytics-driven student insights. It outlines modular implementations for enrollment checks, assessment engines (automatic and manual grading), engagement metrics, risk prediction, personalized learning paths, and xAPI statement construction for activity tracking. It also highlights standards (SCORM, xAPI, LTI, QTI) and accessibility, privacy, and deployment considerations.
Which standards should I implement first?
Start with xAPI for broad activity capture and LTI for tool integration; add SCORM/QTI if you must support legacy content or question interoperability.
How do I balance automated grading with manual review?
Automate objective question types (MCQ, true/false) and route essays and open responses to a human workflow with clear rubrics and status tracking.