home / skills / personamanagmentlayer / pcl / aerospace-expert

aerospace-expert skill

/stdlib/domains/aerospace-expert

This skill provides expert guidance on aerospace systems, flight management, and safety to optimize operations and compliance.

npx playbooks add skill personamanagmentlayer/pcl --skill aerospace-expert

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
25.2 KB
---
name: aerospace-expert
version: 1.0.0
description: Expert-level aerospace systems, flight management, maintenance tracking, aviation safety, and aerospace software
category: domains
tags: [aerospace, aviation, flight, maintenance, safety, atc]
allowed-tools:
  - Read
  - Write
  - Edit
---

# Aerospace Expert

Expert guidance for aerospace systems, flight management, maintenance tracking, aviation safety, air traffic control systems, and aerospace software development.

## Core Concepts

### Aerospace Systems
- Flight Management Systems (FMS)
- Maintenance, Repair, and Overhaul (MRO)
- Air Traffic Control (ATC) systems
- Aircraft Health Monitoring
- Flight Operations Quality Assurance (FOQA)
- Crew resource management
- Ground handling systems

### Aviation Technologies
- Avionics systems
- ACARS (Aircraft Communications Addressing and Reporting System)
- ADS-B (Automatic Dependent Surveillance-Broadcast)
- Flight data recorders (black boxes)
- Weather radar systems
- Autopilot and fly-by-wire
- Satellite communications

### Standards and Regulations
- FAA regulations (Federal Aviation Administration)
- EASA standards (European Union Aviation Safety Agency)
- ICAO standards (International Civil Aviation Organization)
- DO-178C (software airworthiness)
- DO-254 (hardware airworthiness)
- SPEC-42 (maintenance tracking)
- ATA chapters (maintenance organization)

## Flight Management System

```python
from dataclasses import dataclass
from datetime import datetime, timedelta
from typing import List, Optional, Tuple
from decimal import Decimal
from enum import Enum
import numpy as np

class FlightPhase(Enum):
    PRE_FLIGHT = "pre_flight"
    TAXI = "taxi"
    TAKEOFF = "takeoff"
    CLIMB = "climb"
    CRUISE = "cruise"
    DESCENT = "descent"
    APPROACH = "approach"
    LANDING = "landing"
    COMPLETED = "completed"

class FlightStatus(Enum):
    SCHEDULED = "scheduled"
    BOARDING = "boarding"
    DEPARTED = "departed"
    EN_ROUTE = "en_route"
    DELAYED = "delayed"
    ARRIVED = "arrived"
    CANCELLED = "cancelled"

@dataclass
class Waypoint:
    """Navigation waypoint"""
    name: str
    latitude: float
    longitude: float
    altitude_ft: int
    estimated_time: datetime

@dataclass
class Flight:
    """Flight information"""
    flight_number: str
    aircraft_id: str
    aircraft_type: str
    departure_airport: str
    arrival_airport: str
    scheduled_departure: datetime
    scheduled_arrival: datetime
    actual_departure: Optional[datetime]
    actual_arrival: Optional[datetime]
    status: FlightStatus
    route: List[Waypoint]
    crew_members: List[str]
    passenger_count: int
    cargo_weight_kg: float

@dataclass
class FlightPlan:
    """Filed flight plan"""
    flight_plan_id: str
    flight_number: str
    aircraft_id: str
    departure: str
    destination: str
    alternate_airports: List[str]
    route_string: str
    cruise_altitude_ft: int
    cruise_speed_kts: int
    estimated_flight_time: timedelta
    fuel_required_kg: float
    filed_at: datetime

class FlightManagementSystem:
    """Flight planning and management"""

    def __init__(self):
        self.flights = {}
        self.flight_plans = {}
        self.aircraft_positions = {}

    def create_flight_plan(self, flight_data: dict) -> FlightPlan:
        """Create and file flight plan"""
        flight_plan_id = self._generate_flight_plan_id()

        # Calculate route
        route = self._calculate_optimal_route(
            flight_data['departure'],
            flight_data['destination'],
            flight_data['aircraft_type']
        )

        # Calculate fuel requirements
        fuel_required = self._calculate_fuel_requirements(
            route['distance_nm'],
            flight_data['aircraft_type'],
            flight_data.get('passenger_count', 0),
            flight_data.get('cargo_weight_kg', 0)
        )

        flight_plan = FlightPlan(
            flight_plan_id=flight_plan_id,
            flight_number=flight_data['flight_number'],
            aircraft_id=flight_data['aircraft_id'],
            departure=flight_data['departure'],
            destination=flight_data['destination'],
            alternate_airports=flight_data.get('alternates', []),
            route_string=route['route_string'],
            cruise_altitude_ft=route['cruise_altitude'],
            cruise_speed_kts=route['cruise_speed'],
            estimated_flight_time=route['estimated_time'],
            fuel_required_kg=fuel_required,
            filed_at=datetime.now()
        )

        self.flight_plans[flight_plan_id] = flight_plan

        # File with ATC
        self._file_with_atc(flight_plan)

        return flight_plan

    def _calculate_optimal_route(self,
                                 departure: str,
                                 destination: str,
                                 aircraft_type: str) -> dict:
        """Calculate optimal flight route"""
        # Get airport coordinates
        dep_coords = self._get_airport_coordinates(departure)
        dest_coords = self._get_airport_coordinates(destination)

        # Calculate great circle distance
        distance_nm = self._calculate_distance(dep_coords, dest_coords)

        # Determine cruise altitude based on distance and aircraft
        if distance_nm < 500:
            cruise_altitude = 25000  # FL250
        elif distance_nm < 1500:
            cruise_altitude = 35000  # FL350
        else:
            cruise_altitude = 39000  # FL390

        # Determine cruise speed based on aircraft type
        cruise_speeds = {
            'B737': 450,   # knots
            'B777': 490,
            'A320': 450,
            'A350': 490
        }
        cruise_speed = cruise_speeds.get(aircraft_type, 450)

        # Calculate flight time
        flight_time_hours = distance_nm / cruise_speed
        estimated_time = timedelta(hours=flight_time_hours)

        # Generate route string (simplified)
        route_string = f"{departure} DCT {destination}"

        return {
            'distance_nm': distance_nm,
            'cruise_altitude': cruise_altitude,
            'cruise_speed': cruise_speed,
            'estimated_time': estimated_time,
            'route_string': route_string
        }

    def _calculate_fuel_requirements(self,
                                    distance_nm: float,
                                    aircraft_type: str,
                                    passengers: int,
                                    cargo_kg: float) -> float:
        """Calculate required fuel for flight"""
        # Fuel consumption rates (kg per nm)
        fuel_rates = {
            'B737': 3.5,
            'B777': 8.0,
            'A320': 3.2,
            'A350': 7.5
        }

        base_rate = fuel_rates.get(aircraft_type, 4.0)

        # Calculate trip fuel
        trip_fuel = distance_nm * base_rate

        # Add weight penalty (simplified)
        weight_penalty = (passengers * 100 + cargo_kg) / 10000 * trip_fuel * 0.1

        # Reserve fuel (45 minutes at cruise)
        reserve_fuel = base_rate * 45 * 7.5  # 7.5 nm per minute

        # Contingency fuel (5% of trip fuel)
        contingency_fuel = trip_fuel * 0.05

        # Alternate fuel (for diversion)
        alternate_fuel = 100 * base_rate  # 100 nm

        total_fuel = trip_fuel + weight_penalty + reserve_fuel + contingency_fuel + alternate_fuel

        return total_fuel

    def track_flight_progress(self, flight_number: str) -> dict:
        """Track real-time flight progress"""
        flight = self.flights.get(flight_number)
        if not flight:
            return {'error': 'Flight not found'}

        # Get current position
        current_position = self.aircraft_positions.get(flight.aircraft_id)

        if not current_position:
            return {
                'flight_number': flight_number,
                'status': flight.status.value,
                'message': 'No position data available'
            }

        # Calculate progress
        total_distance = self._calculate_distance(
            self._get_airport_coordinates(flight.departure_airport),
            self._get_airport_coordinates(flight.arrival_airport)
        )

        distance_from_origin = self._calculate_distance(
            self._get_airport_coordinates(flight.departure_airport),
            (current_position['latitude'], current_position['longitude'])
        )

        progress_percent = (distance_from_origin / total_distance) * 100

        # Calculate ETA
        if current_position.get('ground_speed', 0) > 0:
            distance_remaining = total_distance - distance_from_origin
            time_remaining_hours = distance_remaining / current_position['ground_speed']
            eta = datetime.now() + timedelta(hours=time_remaining_hours)
        else:
            eta = flight.scheduled_arrival

        return {
            'flight_number': flight_number,
            'status': flight.status.value,
            'current_position': {
                'latitude': current_position['latitude'],
                'longitude': current_position['longitude'],
                'altitude_ft': current_position['altitude_ft'],
                'ground_speed_kts': current_position['ground_speed']
            },
            'progress_percent': progress_percent,
            'distance_remaining_nm': total_distance - distance_from_origin,
            'estimated_arrival': eta.isoformat(),
            'on_time': eta <= flight.scheduled_arrival
        }

    def calculate_landing_performance(self,
                                     aircraft_type: str,
                                     runway_length_ft: int,
                                     wind_speed_kts: int,
                                     wind_direction: int,
                                     runway_heading: int,
                                     temperature_c: float,
                                     altitude_ft: int) -> dict:
        """Calculate landing performance requirements"""
        # Base landing distance for aircraft type
        base_distances = {
            'B737': 5000,  # feet
            'B777': 7000,
            'A320': 4800,
            'A350': 6500
        }

        base_distance = base_distances.get(aircraft_type, 5500)

        # Wind component calculation
        wind_angle = abs(wind_direction - runway_heading)
        headwind = wind_speed_kts * np.cos(np.radians(wind_angle))
        crosswind = wind_speed_kts * np.sin(np.radians(wind_angle))

        # Adjust for headwind/tailwind
        # Headwind: reduce distance by 10% per 10 knots
        # Tailwind: increase distance by 20% per 10 knots
        if headwind > 0:  # Headwind
            distance_adjustment = -0.1 * (headwind / 10)
        else:  # Tailwind
            distance_adjustment = 0.2 * (abs(headwind) / 10)

        # Adjust for temperature (density altitude)
        isa_temp = 15 - (altitude_ft / 1000 * 2)  # ISA standard
        temp_deviation = temperature_c - isa_temp
        temp_adjustment = temp_deviation * 0.01  # 1% per degree

        # Calculate required landing distance
        adjustments = 1 + distance_adjustment + temp_adjustment
        required_distance = base_distance * adjustments

        # Safety margin (typical 1.67 for dry runway)
        safety_factor = 1.67
        required_distance_with_margin = required_distance * safety_factor

        # Check if runway is adequate
        runway_adequate = runway_length_ft >= required_distance_with_margin

        return {
            'aircraft_type': aircraft_type,
            'required_landing_distance_ft': int(required_distance_with_margin),
            'available_runway_ft': runway_length_ft,
            'runway_adequate': runway_adequate,
            'margin_ft': runway_length_ft - required_distance_with_margin,
            'conditions': {
                'headwind_kts': headwind,
                'crosswind_kts': crosswind,
                'temperature_c': temperature_c,
                'altitude_ft': altitude_ft
            }
        }

    def _calculate_distance(self, point1: Tuple[float, float], point2: Tuple[float, float]) -> float:
        """Calculate great circle distance in nautical miles"""
        from math import radians, sin, cos, sqrt, atan2

        lat1, lon1 = radians(point1[0]), radians(point1[1])
        lat2, lon2 = radians(point2[0]), radians(point2[1])

        dlat = lat2 - lat1
        dlon = lon2 - lon1

        a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
        c = 2 * atan2(sqrt(a), sqrt(1-a))

        distance_km = 6371 * c  # Earth radius in km
        distance_nm = distance_km * 0.539957  # Convert to nautical miles

        return distance_nm

    def _get_airport_coordinates(self, icao_code: str) -> Tuple[float, float]:
        """Get airport coordinates"""
        # Would query airport database
        airports = {
            'KJFK': (40.6413, -73.7781),  # JFK
            'KLAX': (33.9416, -118.4085),  # LAX
            'EGLL': (51.4700, -0.4543),    # Heathrow
            'LFPG': (49.0097, 2.5479)      # Charles de Gaulle
        }
        return airports.get(icao_code, (0.0, 0.0))

    def _file_with_atc(self, flight_plan: FlightPlan):
        """File flight plan with ATC"""
        # Implementation would submit to ATC systems
        pass

    def _generate_flight_plan_id(self) -> str:
        import uuid
        return f"FPL-{uuid.uuid4().hex[:10].upper()}"
```

## Aircraft Maintenance System

```python
from enum import Enum

class MaintenanceType(Enum):
    A_CHECK = "a_check"  # Every 400-600 flight hours
    B_CHECK = "b_check"  # Every 6-8 months
    C_CHECK = "c_check"  # Every 18-24 months
    D_CHECK = "d_check"  # Every 6-10 years
    LINE_MAINTENANCE = "line_maintenance"
    UNSCHEDULED = "unscheduled"

@dataclass
class Aircraft:
    """Aircraft information"""
    aircraft_id: str
    registration: str
    aircraft_type: str
    manufacturer: str
    model: str
    serial_number: str
    manufacture_date: datetime
    total_flight_hours: float
    total_cycles: int  # Takeoff/landing cycles
    last_a_check: datetime
    last_c_check: datetime
    airworthiness_certificate: str
    next_major_inspection: datetime

@dataclass
class MaintenanceRecord:
    """Maintenance work record"""
    record_id: str
    aircraft_id: str
    maintenance_type: MaintenanceType
    work_performed: str
    components_replaced: List[str]
    performed_by: str
    performed_at: datetime
    flight_hours_at_maintenance: float
    cycles_at_maintenance: int
    next_due_hours: Optional[float]
    next_due_date: Optional[datetime]

class AircraftMaintenanceSystem:
    """MRO (Maintenance, Repair, Overhaul) system"""

    def __init__(self):
        self.aircraft = {}
        self.maintenance_records = []
        self.component_tracking = {}

    def check_maintenance_due(self, aircraft_id: str) -> dict:
        """Check if maintenance is due for aircraft"""
        aircraft = self.aircraft.get(aircraft_id)
        if not aircraft:
            return {'error': 'Aircraft not found'}

        due_items = []

        # Check A-check (every 500 hours)
        hours_since_a_check = aircraft.total_flight_hours - self._get_last_check_hours(
            aircraft_id, MaintenanceType.A_CHECK
        )

        if hours_since_a_check >= 500:
            due_items.append({
                'type': 'A-check',
                'urgency': 'high' if hours_since_a_check >= 550 else 'medium',
                'hours_overdue': max(0, hours_since_a_check - 500)
            })

        # Check calendar-based C-check
        days_since_c_check = (datetime.now() - aircraft.last_c_check).days

        if days_since_c_check >= 540:  # 18 months
            due_items.append({
                'type': 'C-check',
                'urgency': 'critical' if days_since_c_check >= 600 else 'high',
                'days_overdue': max(0, days_since_c_check - 540)
            })

        # Check component life limits
        component_items = self._check_component_life_limits(aircraft_id)
        due_items.extend(component_items)

        return {
            'aircraft_id': aircraft_id,
            'registration': aircraft.registration,
            'maintenance_required': len(due_items) > 0,
            'due_items': due_items,
            'airworthy': len([item for item in due_items if item['urgency'] == 'critical']) == 0
        }

    def _get_last_check_hours(self, aircraft_id: str, check_type: MaintenanceType) -> float:
        """Get flight hours at last check"""
        records = [
            r for r in self.maintenance_records
            if r.aircraft_id == aircraft_id and r.maintenance_type == check_type
        ]

        if records:
            latest = max(records, key=lambda r: r.performed_at)
            return latest.flight_hours_at_maintenance

        return 0.0

    def _check_component_life_limits(self, aircraft_id: str) -> List[dict]:
        """Check component life limits"""
        due_items = []

        components = self.component_tracking.get(aircraft_id, {})

        for component_name, component_data in components.items():
            if component_data['life_limit_hours']:
                hours_used = component_data['hours_since_new']
                life_limit = component_data['life_limit_hours']

                if hours_used >= life_limit * 0.9:  # Within 90% of life limit
                    due_items.append({
                        'type': 'component_replacement',
                        'component': component_name,
                        'urgency': 'critical' if hours_used >= life_limit else 'high',
                        'hours_remaining': max(0, life_limit - hours_used)
                    })

        return due_items

    def record_maintenance(self,
                          aircraft_id: str,
                          maintenance_data: dict) -> MaintenanceRecord:
        """Record completed maintenance"""
        aircraft = self.aircraft.get(aircraft_id)
        if not aircraft:
            raise ValueError("Aircraft not found")

        record = MaintenanceRecord(
            record_id=self._generate_record_id(),
            aircraft_id=aircraft_id,
            maintenance_type=MaintenanceType(maintenance_data['type']),
            work_performed=maintenance_data['work_performed'],
            components_replaced=maintenance_data.get('components_replaced', []),
            performed_by=maintenance_data['technician_id'],
            performed_at=datetime.now(),
            flight_hours_at_maintenance=aircraft.total_flight_hours,
            cycles_at_maintenance=aircraft.total_cycles,
            next_due_hours=maintenance_data.get('next_due_hours'),
            next_due_date=maintenance_data.get('next_due_date')
        )

        self.maintenance_records.append(record)

        # Update aircraft maintenance dates
        if record.maintenance_type == MaintenanceType.A_CHECK:
            aircraft.last_a_check = datetime.now()
        elif record.maintenance_type == MaintenanceType.C_CHECK:
            aircraft.last_c_check = datetime.now()

        return record

    def predict_maintenance_cost(self,
                                aircraft_type: str,
                                flight_hours_per_year: float) -> dict:
        """Predict annual maintenance costs"""
        # Base maintenance costs per aircraft type
        base_costs = {
            'B737': {
                'hourly_rate': 800,  # $ per flight hour
                'a_check': 25000,
                'c_check': 500000,
                'd_check': 5000000
            },
            'B777': {
                'hourly_rate': 1500,
                'a_check': 50000,
                'c_check': 1000000,
                'd_check': 10000000
            }
        }

        costs = base_costs.get(aircraft_type, base_costs['B737'])

        # Calculate annual costs
        hourly_maintenance = flight_hours_per_year * costs['hourly_rate']

        # A-checks (assume 2 per year for 1000 hours/year)
        a_checks_per_year = flight_hours_per_year / 500
        a_check_costs = a_checks_per_year * costs['a_check']

        # C-check (amortized over 18 months)
        c_check_annual = costs['c_check'] / 1.5

        # D-check (amortized over 8 years)
        d_check_annual = costs['d_check'] / 8

        total_annual = hourly_maintenance + a_check_costs + c_check_annual + d_check_annual

        return {
            'aircraft_type': aircraft_type,
            'flight_hours_per_year': flight_hours_per_year,
            'maintenance_costs': {
                'hourly_maintenance': hourly_maintenance,
                'a_checks': a_check_costs,
                'c_check_amortized': c_check_annual,
                'd_check_amortized': d_check_annual,
                'total_annual': total_annual
            },
            'cost_per_flight_hour': total_annual / flight_hours_per_year
        }

    def _generate_record_id(self) -> str:
        import uuid
        return f"MX-{uuid.uuid4().hex[:10].upper()}"
```

## Aviation Safety Analysis

```python
class AviationSafetySystem:
    """Flight safety and FOQA analysis"""

    def __init__(self):
        self.safety_reports = []
        self.foqa_events = []

    def analyze_flight_data(self, flight_data: dict) -> dict:
        """Analyze flight data for safety events (FOQA)"""
        events_detected = []

        # Check for hard landings
        if flight_data.get('landing_vertical_speed_fpm', 0) < -600:
            events_detected.append({
                'event_type': 'hard_landing',
                'severity': 'medium',
                'value': flight_data['landing_vertical_speed_fpm'],
                'threshold': -600
            })

        # Check for unstabilized approaches
        if flight_data.get('approach_speed_deviation_kts', 0) > 10:
            events_detected.append({
                'event_type': 'unstabilized_approach',
                'severity': 'high',
                'value': flight_data['approach_speed_deviation_kts'],
                'threshold': 10
            })

        # Check for altitude deviations
        if flight_data.get('altitude_deviation_ft', 0) > 300:
            events_detected.append({
                'event_type': 'altitude_deviation',
                'severity': 'high',
                'value': flight_data['altitude_deviation_ft'],
                'threshold': 300
            })

        # Check for excessive bank angles
        if flight_data.get('max_bank_angle_deg', 0) > 30:
            events_detected.append({
                'event_type': 'excessive_bank',
                'severity': 'medium',
                'value': flight_data['max_bank_angle_deg'],
                'threshold': 30
            })

        # Calculate overall safety score
        safety_score = 100.0 - (len(events_detected) * 10)

        return {
            'flight_number': flight_data['flight_number'],
            'events_detected': events_detected,
            'safety_score': max(0.0, safety_score),
            'requires_review': len(events_detected) > 0
        }

    def calculate_safety_metrics(self, flights_data: List[dict]) -> dict:
        """Calculate safety KPIs"""
        total_flights = len(flights_data)
        total_hours = sum(f.get('flight_hours', 0) for f in flights_data)

        # Count safety events
        safety_events = sum(
            len(self.analyze_flight_data(f)['events_detected'])
            for f in flights_data
        )

        # Event rate per 1000 flights
        event_rate = (safety_events / total_flights * 1000) if total_flights > 0 else 0

        return {
            'total_flights': total_flights,
            'total_flight_hours': total_hours,
            'safety_events': safety_events,
            'event_rate_per_1000_flights': event_rate,
            'safety_rating': 'Excellent' if event_rate < 5 else
                           'Good' if event_rate < 10 else
                           'Needs Improvement'
        }
```

## Best Practices

### Flight Operations
- File complete and accurate flight plans
- Conduct thorough pre-flight checks
- Monitor fuel continuously
- Maintain communication with ATC
- Follow standard operating procedures (SOPs)
- Implement crew resource management
- Use automation appropriately

### Maintenance Management
- Follow manufacturer maintenance schedules
- Track all component life limits
- Maintain detailed maintenance logs
- Use certified parts and technicians
- Implement predictive maintenance
- Conduct regular inspections
- Ensure airworthiness compliance

### Safety Management
- Implement Safety Management System (SMS)
- Encourage safety reporting culture
- Analyze FOQA data regularly
- Conduct regular safety audits
- Maintain emergency procedures
- Train crew on CRM principles
- Track safety KPIs

### Regulatory Compliance
- Maintain current certifications
- Follow DO-178C for software
- Implement quality management systems
- Conduct regular audits
- Maintain proper documentation
- Follow ATA chapter organization
- Ensure ETOPS compliance (if applicable)

## Anti-Patterns

❌ Delaying required maintenance
❌ Poor flight planning
❌ Inadequate fuel reserves
❌ Ignoring weather conditions
❌ Poor crew communication
❌ No safety management system
❌ Inadequate record keeping
❌ Using uncertified parts
❌ Skipping pre-flight checks

## Resources

- FAA: https://www.faa.gov/
- ICAO: https://www.icao.int/
- EASA: https://www.easa.europa.eu/
- IATA: https://www.iata.org/
- Flight Safety Foundation: https://flightsafety.org/
- FAA Airworthiness Directives: https://www.faa.gov/regulations_policies/airworthiness_directives/
- DO-178C Standard: https://www.rtca.org/

Overview

This skill delivers expert-level guidance and tooling for aerospace systems, flight management, maintenance tracking, aviation safety, and aerospace software design. It packages domain knowledge on FMS, ATC interactions, MRO processes, flight performance calculations, and regulatory standards. Use it to validate operational decisions, build aviation software, or design maintenance workflows.

How this skill works

The skill inspects flight plans, computes optimal routes, estimates fuel and time, and models real-time flight progress using aircraft position feeds. It evaluates landing performance against runway and environmental conditions, and supports maintenance scheduling and inspection planning. It maps recommendations to regulatory standards like FAA, EASA, ICAO, DO-178C and DO-254 where relevant.

When to use it

  • Planning and filing flight plans and alternates
  • Estimating fuel, cruise altitude, cruise speed, and flight time
  • Assessing landing performance and runway adequacy
  • Tracking in-flight progress and calculating ETA and on-time probability
  • Designing maintenance schedules (A/B/C/D checks) and MRO workflows
  • Implementing or validating aerospace software and avionics requirements

Best practices

  • Validate airport coordinates and NOTAMs before final planning
  • Use conservative fuel reserves and include contingency and alternate fuel in calculations
  • Cross-check landing distance outputs with manufacturer data and current runway conditions
  • Automate position ingestion from ADS-B/ACARS for real-time tracking accuracy
  • Align maintenance rules to ATA chapters and SPEC-42 records for traceability
  • Apply DO-178C/DO-254 guidelines when coding avionics or safety-critical systems

Example use cases

  • Generate and file a complete flight plan with calculated fuel, cruise altitude, and estimated time for dispatch
  • Simulate landing performance for a given aircraft, runway, wind, temperature, and field elevation to verify runway suitability
  • Track an en-route aircraft with live telemetry, compute progress percent, distance remaining, and revised ETA
  • Plan recurring maintenance checks and forecast next major inspections based on flight hours and cycles
  • Prototype avionics or FMS features while ensuring software development follows airworthiness standards

FAQ

Can this skill replace manufacturer performance manuals?

No. Use this skill for planning and validation, but always reference aircraft manufacturer performance tables and company operational manuals for final dispatch decisions.

How does it handle regulatory compliance?

It maps outputs to common regulations and standards (FAA, EASA, ICAO, DO-178C, DO-254) and highlights where additional certification or documentation is required, but it does not replace formal certification processes.