home / skills / partme-ai / full-stack-skills / pdf

pdf skill

/skills/pdf

This skill helps you manipulate PDF documents programmatically, including merging, splitting, extracting text and tables, and creating forms at scale.

This is most likely a fork of the pdf skill from openclaw
npx playbooks add skill partme-ai/full-stack-skills --skill pdf

Review the files below or copy the command above to add this skill to your agents.

Files (14)
SKILL.md
6.9 KB
---
name: pdf
description: Comprehensive PDF manipulation toolkit for extracting text and tables, creating new PDFs, merging/splitting documents, and handling forms. When Claude needs to fill in a PDF form or programmatically process, generate, or analyze PDF documents at scale.
license: Proprietary. LICENSE.txt has complete terms
---

# PDF Processing Guide

## Overview

This guide covers essential PDF processing operations using Python libraries and command-line tools. For advanced features, JavaScript libraries, and detailed examples, see reference.md. If you need to fill out a PDF form, read forms.md and follow its instructions.

## Quick Start

```python
from pypdf import PdfReader, PdfWriter

# Read a PDF
reader = PdfReader("document.pdf")
print(f"Pages: {len(reader.pages)}")

# Extract text
text = ""
for page in reader.pages:
    text += page.extract_text()
```

## Python Libraries

### pypdf - Basic Operations

#### Merge PDFs
```python
from pypdf import PdfWriter, PdfReader

writer = PdfWriter()
for pdf_file in ["doc1.pdf", "doc2.pdf", "doc3.pdf"]:
    reader = PdfReader(pdf_file)
    for page in reader.pages:
        writer.add_page(page)

with open("merged.pdf", "wb") as output:
    writer.write(output)
```

#### Split PDF
```python
reader = PdfReader("input.pdf")
for i, page in enumerate(reader.pages):
    writer = PdfWriter()
    writer.add_page(page)
    with open(f"page_{i+1}.pdf", "wb") as output:
        writer.write(output)
```

#### Extract Metadata
```python
reader = PdfReader("document.pdf")
meta = reader.metadata
print(f"Title: {meta.title}")
print(f"Author: {meta.author}")
print(f"Subject: {meta.subject}")
print(f"Creator: {meta.creator}")
```

#### Rotate Pages
```python
reader = PdfReader("input.pdf")
writer = PdfWriter()

page = reader.pages[0]
page.rotate(90)  # Rotate 90 degrees clockwise
writer.add_page(page)

with open("rotated.pdf", "wb") as output:
    writer.write(output)
```

### pdfplumber - Text and Table Extraction

#### Extract Text with Layout
```python
import pdfplumber

with pdfplumber.open("document.pdf") as pdf:
    for page in pdf.pages:
        text = page.extract_text()
        print(text)
```

#### Extract Tables
```python
with pdfplumber.open("document.pdf") as pdf:
    for i, page in enumerate(pdf.pages):
        tables = page.extract_tables()
        for j, table in enumerate(tables):
            print(f"Table {j+1} on page {i+1}:")
            for row in table:
                print(row)
```

#### Advanced Table Extraction
```python
import pandas as pd

with pdfplumber.open("document.pdf") as pdf:
    all_tables = []
    for page in pdf.pages:
        tables = page.extract_tables()
        for table in tables:
            if table:  # Check if table is not empty
                df = pd.DataFrame(table[1:], columns=table[0])
                all_tables.append(df)

# Combine all tables
if all_tables:
    combined_df = pd.concat(all_tables, ignore_index=True)
    combined_df.to_excel("extracted_tables.xlsx", index=False)
```

### reportlab - Create PDFs

#### Basic PDF Creation
```python
from reportlab.lib.pagesizes import letter
from reportlab.pdfgen import canvas

c = canvas.Canvas("hello.pdf", pagesize=letter)
width, height = letter

# Add text
c.drawString(100, height - 100, "Hello World!")
c.drawString(100, height - 120, "This is a PDF created with reportlab")

# Add a line
c.line(100, height - 140, 400, height - 140)

# Save
c.save()
```

#### Create PDF with Multiple Pages
```python
from reportlab.lib.pagesizes import letter
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet

doc = SimpleDocTemplate("report.pdf", pagesize=letter)
styles = getSampleStyleSheet()
story = []

# Add content
title = Paragraph("Report Title", styles['Title'])
story.append(title)
story.append(Spacer(1, 12))

body = Paragraph("This is the body of the report. " * 20, styles['Normal'])
story.append(body)
story.append(PageBreak())

# Page 2
story.append(Paragraph("Page 2", styles['Heading1']))
story.append(Paragraph("Content for page 2", styles['Normal']))

# Build PDF
doc.build(story)
```

## Command-Line Tools

### pdftotext (poppler-utils)
```bash
# Extract text
pdftotext input.pdf output.txt

# Extract text preserving layout
pdftotext -layout input.pdf output.txt

# Extract specific pages
pdftotext -f 1 -l 5 input.pdf output.txt  # Pages 1-5
```

### qpdf
```bash
# Merge PDFs
qpdf --empty --pages file1.pdf file2.pdf -- merged.pdf

# Split pages
qpdf input.pdf --pages . 1-5 -- pages1-5.pdf
qpdf input.pdf --pages . 6-10 -- pages6-10.pdf

# Rotate pages
qpdf input.pdf output.pdf --rotate=+90:1  # Rotate page 1 by 90 degrees

# Remove password
qpdf --password=mypassword --decrypt encrypted.pdf decrypted.pdf
```

### pdftk (if available)
```bash
# Merge
pdftk file1.pdf file2.pdf cat output merged.pdf

# Split
pdftk input.pdf burst

# Rotate
pdftk input.pdf rotate 1east output rotated.pdf
```

## Common Tasks

### Extract Text from Scanned PDFs
```python
# Requires: pip install pytesseract pdf2image
import pytesseract
from pdf2image import convert_from_path

# Convert PDF to images
images = convert_from_path('scanned.pdf')

# OCR each page
text = ""
for i, image in enumerate(images):
    text += f"Page {i+1}:\n"
    text += pytesseract.image_to_string(image)
    text += "\n\n"

print(text)
```

### Add Watermark
```python
from pypdf import PdfReader, PdfWriter

# Create watermark (or load existing)
watermark = PdfReader("watermark.pdf").pages[0]

# Apply to all pages
reader = PdfReader("document.pdf")
writer = PdfWriter()

for page in reader.pages:
    page.merge_page(watermark)
    writer.add_page(page)

with open("watermarked.pdf", "wb") as output:
    writer.write(output)
```

### Extract Images
```bash
# Using pdfimages (poppler-utils)
pdfimages -j input.pdf output_prefix

# This extracts all images as output_prefix-000.jpg, output_prefix-001.jpg, etc.
```

### Password Protection
```python
from pypdf import PdfReader, PdfWriter

reader = PdfReader("input.pdf")
writer = PdfWriter()

for page in reader.pages:
    writer.add_page(page)

# Add password
writer.encrypt("userpassword", "ownerpassword")

with open("encrypted.pdf", "wb") as output:
    writer.write(output)
```

## Quick Reference

| Task | Best Tool | Command/Code |
|------|-----------|--------------|
| Merge PDFs | pypdf | `writer.add_page(page)` |
| Split PDFs | pypdf | One page per file |
| Extract text | pdfplumber | `page.extract_text()` |
| Extract tables | pdfplumber | `page.extract_tables()` |
| Create PDFs | reportlab | Canvas or Platypus |
| Command line merge | qpdf | `qpdf --empty --pages ...` |
| OCR scanned PDFs | pytesseract | Convert to image first |
| Fill PDF forms | pdf-lib or pypdf (see forms.md) | See forms.md |

## Next Steps

- For advanced pypdfium2 usage, see reference.md
- For JavaScript libraries (pdf-lib), see reference.md
- If you need to fill out a PDF form, follow the instructions in forms.md
- For troubleshooting guides, see reference.md

Overview

This skill is a comprehensive PDF manipulation toolkit for extracting text and tables, creating and modifying PDFs, merging and splitting documents, and handling forms programmatically. It bundles practical Python workflows and command-line patterns so Claude can fill forms, analyze documents at scale, or generate new PDFs reliably. The focus is on repeatable, automatable operations useful for pipelines and agent tasks.

How this skill works

The skill uses well-supported Python libraries (pypdf, pdfplumber, reportlab, pytesseract/pdf2image) for reading, writing, extracting, and creating PDFs, supplemented by command-line utilities (qpdf, pdftotext, pdfimages) for fast batch operations. It exposes common building blocks: read pages, extract text and tables, OCR scanned pages, merge/split files, rotate or watermark pages, extract images, and encrypt or decrypt documents. Forms handling and advanced layout extraction are provided via targeted libraries and patterns so agents can fill or parse structured PDFs programmatically.

When to use it

  • Extract text or tables from digital PDFs for downstream analysis or ingestion.
  • Convert scanned PDFs to searchable text using OCR before text processing.
  • Merge multiple PDFs or split large documents into per-page files.
  • Generate reports or invoices programmatically with custom layouts.
  • Apply watermarks, rotate pages, or add password protection for distribution.

Best practices

  • Prefer pdfplumber for structured text and table extraction; check table confidence and post-process with pandas.
  • Use pytesseract+pdf2image for scanned PDFs; tune DPI and language models for accuracy.
  • Stream pages rather than loading huge PDFs entirely into memory when processing at scale.
  • Keep a reproducible pipeline: record commands (qpdf, pdftotext) and library versions for reliable results.
  • Validate form field names before filling and test on copies to avoid corrupting originals.

Example use cases

  • Automated invoice ingestion: extract tables from vendor PDFs, normalize into a ledger, and archive merged monthly PDFs.
  • Bulk form-filling: programmatically populate standardized forms (invoices, contracts) and output encrypted distributions.
  • Report generation: assemble text and charts into multi-page PDFs with reportlab and attach watermarks for drafts.
  • Legal document preparation: split discovery PDFs into individual exhibits and rotate or redact pages as needed.
  • OCR pipeline for archival: convert scanned archives into searchable text and extract embedded images for indexing.

FAQ

Which tool is best for extracting tables reliably?

pdfplumber is recommended for table extraction; convert results into pandas DataFrames and apply cleaning rules for best results.

How do I handle scanned PDFs?

Convert pages to images with pdf2image and run pytesseract for OCR. Adjust DPI and language packs to improve recognition.