home / skills / ovachiever / droid-tings / faiss
npx playbooks add skill ovachiever/droid-tings --skill faissReview the files below or copy the command above to add this skill to your agents.
---
name: faiss
description: Facebook's library for efficient similarity search and clustering of dense vectors. Supports billions of vectors, GPU acceleration, and various index types (Flat, IVF, HNSW). Use for fast k-NN search, large-scale vector retrieval, or when you need pure similarity search without metadata. Best for high-performance applications.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [RAG, FAISS, Similarity Search, Vector Search, Facebook AI, GPU Acceleration, Billion-Scale, K-NN, HNSW, High Performance, Large Scale]
dependencies: [faiss-cpu, faiss-gpu, numpy]
---
# FAISS - Efficient Similarity Search
Facebook AI's library for billion-scale vector similarity search.
## When to use FAISS
**Use FAISS when:**
- Need fast similarity search on large vector datasets (millions/billions)
- GPU acceleration required
- Pure vector similarity (no metadata filtering needed)
- High throughput, low latency critical
- Offline/batch processing of embeddings
**Metrics**:
- **31,700+ GitHub stars**
- Meta/Facebook AI Research
- **Handles billions of vectors**
- **C++** with Python bindings
**Use alternatives instead**:
- **Chroma/Pinecone**: Need metadata filtering
- **Weaviate**: Need full database features
- **Annoy**: Simpler, fewer features
## Quick start
### Installation
```bash
# CPU only
pip install faiss-cpu
# GPU support
pip install faiss-gpu
```
### Basic usage
```python
import faiss
import numpy as np
# Create sample data (1000 vectors, 128 dimensions)
d = 128
nb = 1000
vectors = np.random.random((nb, d)).astype('float32')
# Create index
index = faiss.IndexFlatL2(d) # L2 distance
index.add(vectors) # Add vectors
# Search
k = 5 # Find 5 nearest neighbors
query = np.random.random((1, d)).astype('float32')
distances, indices = index.search(query, k)
print(f"Nearest neighbors: {indices}")
print(f"Distances: {distances}")
```
## Index types
### 1. Flat (exact search)
```python
# L2 (Euclidean) distance
index = faiss.IndexFlatL2(d)
# Inner product (cosine similarity if normalized)
index = faiss.IndexFlatIP(d)
# Slowest, most accurate
```
### 2. IVF (inverted file) - Fast approximate
```python
# Create quantizer
quantizer = faiss.IndexFlatL2(d)
# IVF index with 100 clusters
nlist = 100
index = faiss.IndexIVFFlat(quantizer, d, nlist)
# Train on data
index.train(vectors)
# Add vectors
index.add(vectors)
# Search (nprobe = clusters to search)
index.nprobe = 10
distances, indices = index.search(query, k)
```
### 3. HNSW (Hierarchical NSW) - Best quality/speed
```python
# HNSW index
M = 32 # Number of connections per layer
index = faiss.IndexHNSWFlat(d, M)
# No training needed
index.add(vectors)
# Search
distances, indices = index.search(query, k)
```
### 4. Product Quantization - Memory efficient
```python
# PQ reduces memory by 16-32×
m = 8 # Number of subquantizers
nbits = 8
index = faiss.IndexPQ(d, m, nbits)
# Train and add
index.train(vectors)
index.add(vectors)
```
## Save and load
```python
# Save index
faiss.write_index(index, "large.index")
# Load index
index = faiss.read_index("large.index")
# Continue using
distances, indices = index.search(query, k)
```
## GPU acceleration
```python
# Single GPU
res = faiss.StandardGpuResources()
index_cpu = faiss.IndexFlatL2(d)
index_gpu = faiss.index_cpu_to_gpu(res, 0, index_cpu) # GPU 0
# Multi-GPU
index_gpu = faiss.index_cpu_to_all_gpus(index_cpu)
# 10-100× faster than CPU
```
## LangChain integration
```python
from langchain_community.vectorstores import FAISS
from langchain_openai import OpenAIEmbeddings
# Create FAISS vector store
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
# Save
vectorstore.save_local("faiss_index")
# Load
vectorstore = FAISS.load_local(
"faiss_index",
OpenAIEmbeddings(),
allow_dangerous_deserialization=True
)
# Search
results = vectorstore.similarity_search("query", k=5)
```
## LlamaIndex integration
```python
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss
# Create FAISS index
d = 1536
faiss_index = faiss.IndexFlatL2(d)
vector_store = FaissVectorStore(faiss_index=faiss_index)
```
## Best practices
1. **Choose right index type** - Flat for <10K, IVF for 10K-1M, HNSW for quality
2. **Normalize for cosine** - Use IndexFlatIP with normalized vectors
3. **Use GPU for large datasets** - 10-100× faster
4. **Save trained indices** - Training is expensive
5. **Tune nprobe/ef_search** - Balance speed/accuracy
6. **Monitor memory** - PQ for large datasets
7. **Batch queries** - Better GPU utilization
## Performance
| Index Type | Build Time | Search Time | Memory | Accuracy |
|------------|------------|-------------|--------|----------|
| Flat | Fast | Slow | High | 100% |
| IVF | Medium | Fast | Medium | 95-99% |
| HNSW | Slow | Fastest | High | 99% |
| PQ | Medium | Fast | Low | 90-95% |
## Resources
- **GitHub**: https://github.com/facebookresearch/faiss ⭐ 31,700+
- **Wiki**: https://github.com/facebookresearch/faiss/wiki
- **License**: MIT