home / skills / ovachiever / droid-tings / biopython

biopython skill

/skills/biopython

This is most likely a fork of the biopython skill from microck
npx playbooks add skill ovachiever/droid-tings --skill biopython

Review the files below or copy the command above to add this skill to your agents.

Files (8)
SKILL.md
13.4 KB
---
name: biopython
description: "Primary Python toolkit for molecular biology. Preferred for Python-based PubMed/NCBI queries (Bio.Entrez), sequence manipulation, file parsing (FASTA, GenBank, FASTQ, PDB), advanced BLAST workflows, structures, phylogenetics. For quick BLAST, use gget. For direct REST API, use pubmed-database."
---

# Biopython: Computational Molecular Biology in Python

## Overview

Biopython is a comprehensive set of freely available Python tools for biological computation. It provides functionality for sequence manipulation, file I/O, database access, structural bioinformatics, phylogenetics, and many other bioinformatics tasks. The current version is **Biopython 1.85** (released January 2025), which supports Python 3 and requires NumPy.

## When to Use This Skill

Use this skill when:

- Working with biological sequences (DNA, RNA, or protein)
- Reading, writing, or converting biological file formats (FASTA, GenBank, FASTQ, PDB, mmCIF, etc.)
- Accessing NCBI databases (GenBank, PubMed, Protein, Gene, etc.) via Entrez
- Running BLAST searches or parsing BLAST results
- Performing sequence alignments (pairwise or multiple sequence alignments)
- Analyzing protein structures from PDB files
- Creating, manipulating, or visualizing phylogenetic trees
- Finding sequence motifs or analyzing motif patterns
- Calculating sequence statistics (GC content, molecular weight, melting temperature, etc.)
- Performing structural bioinformatics tasks
- Working with population genetics data
- Any other computational molecular biology task

## Core Capabilities

Biopython is organized into modular sub-packages, each addressing specific bioinformatics domains:

1. **Sequence Handling** - Bio.Seq and Bio.SeqIO for sequence manipulation and file I/O
2. **Alignment Analysis** - Bio.Align and Bio.AlignIO for pairwise and multiple sequence alignments
3. **Database Access** - Bio.Entrez for programmatic access to NCBI databases
4. **BLAST Operations** - Bio.Blast for running and parsing BLAST searches
5. **Structural Bioinformatics** - Bio.PDB for working with 3D protein structures
6. **Phylogenetics** - Bio.Phylo for phylogenetic tree manipulation and visualization
7. **Advanced Features** - Motifs, population genetics, sequence utilities, and more

## Installation and Setup

Install Biopython using pip (requires Python 3 and NumPy):

```python
uv pip install biopython
```

For NCBI database access, always set your email address (required by NCBI):

```python
from Bio import Entrez
Entrez.email = "[email protected]"

# Optional: API key for higher rate limits (10 req/s instead of 3 req/s)
Entrez.api_key = "your_api_key_here"
```

## Using This Skill

This skill provides comprehensive documentation organized by functionality area. When working on a task, consult the relevant reference documentation:

### 1. Sequence Handling (Bio.Seq & Bio.SeqIO)

**Reference:** `references/sequence_io.md`

Use for:
- Creating and manipulating biological sequences
- Reading and writing sequence files (FASTA, GenBank, FASTQ, etc.)
- Converting between file formats
- Extracting sequences from large files
- Sequence translation, transcription, and reverse complement
- Working with SeqRecord objects

**Quick example:**
```python
from Bio import SeqIO

# Read sequences from FASTA file
for record in SeqIO.parse("sequences.fasta", "fasta"):
    print(f"{record.id}: {len(record.seq)} bp")

# Convert GenBank to FASTA
SeqIO.convert("input.gb", "genbank", "output.fasta", "fasta")
```

### 2. Alignment Analysis (Bio.Align & Bio.AlignIO)

**Reference:** `references/alignment.md`

Use for:
- Pairwise sequence alignment (global and local)
- Reading and writing multiple sequence alignments
- Using substitution matrices (BLOSUM, PAM)
- Calculating alignment statistics
- Customizing alignment parameters

**Quick example:**
```python
from Bio import Align

# Pairwise alignment
aligner = Align.PairwiseAligner()
aligner.mode = 'global'
alignments = aligner.align("ACCGGT", "ACGGT")
print(alignments[0])
```

### 3. Database Access (Bio.Entrez)

**Reference:** `references/databases.md`

Use for:
- Searching NCBI databases (PubMed, GenBank, Protein, Gene, etc.)
- Downloading sequences and records
- Fetching publication information
- Finding related records across databases
- Batch downloading with proper rate limiting

**Quick example:**
```python
from Bio import Entrez
Entrez.email = "[email protected]"

# Search PubMed
handle = Entrez.esearch(db="pubmed", term="biopython", retmax=10)
results = Entrez.read(handle)
handle.close()
print(f"Found {results['Count']} results")
```

### 4. BLAST Operations (Bio.Blast)

**Reference:** `references/blast.md`

Use for:
- Running BLAST searches via NCBI web services
- Running local BLAST searches
- Parsing BLAST XML output
- Filtering results by E-value or identity
- Extracting hit sequences

**Quick example:**
```python
from Bio.Blast import NCBIWWW, NCBIXML

# Run BLAST search
result_handle = NCBIWWW.qblast("blastn", "nt", "ATCGATCGATCG")
blast_record = NCBIXML.read(result_handle)

# Display top hits
for alignment in blast_record.alignments[:5]:
    print(f"{alignment.title}: E-value={alignment.hsps[0].expect}")
```

### 5. Structural Bioinformatics (Bio.PDB)

**Reference:** `references/structure.md`

Use for:
- Parsing PDB and mmCIF structure files
- Navigating protein structure hierarchy (SMCRA: Structure/Model/Chain/Residue/Atom)
- Calculating distances, angles, and dihedrals
- Secondary structure assignment (DSSP)
- Structure superimposition and RMSD calculation
- Extracting sequences from structures

**Quick example:**
```python
from Bio.PDB import PDBParser

# Parse structure
parser = PDBParser(QUIET=True)
structure = parser.get_structure("1crn", "1crn.pdb")

# Calculate distance between alpha carbons
chain = structure[0]["A"]
distance = chain[10]["CA"] - chain[20]["CA"]
print(f"Distance: {distance:.2f} Å")
```

### 6. Phylogenetics (Bio.Phylo)

**Reference:** `references/phylogenetics.md`

Use for:
- Reading and writing phylogenetic trees (Newick, NEXUS, phyloXML)
- Building trees from distance matrices or alignments
- Tree manipulation (pruning, rerooting, ladderizing)
- Calculating phylogenetic distances
- Creating consensus trees
- Visualizing trees

**Quick example:**
```python
from Bio import Phylo

# Read and visualize tree
tree = Phylo.read("tree.nwk", "newick")
Phylo.draw_ascii(tree)

# Calculate distance
distance = tree.distance("Species_A", "Species_B")
print(f"Distance: {distance:.3f}")
```

### 7. Advanced Features

**Reference:** `references/advanced.md`

Use for:
- **Sequence motifs** (Bio.motifs) - Finding and analyzing motif patterns
- **Population genetics** (Bio.PopGen) - GenePop files, Fst calculations, Hardy-Weinberg tests
- **Sequence utilities** (Bio.SeqUtils) - GC content, melting temperature, molecular weight, protein analysis
- **Restriction analysis** (Bio.Restriction) - Finding restriction enzyme sites
- **Clustering** (Bio.Cluster) - K-means and hierarchical clustering
- **Genome diagrams** (GenomeDiagram) - Visualizing genomic features

**Quick example:**
```python
from Bio.SeqUtils import gc_fraction, molecular_weight
from Bio.Seq import Seq

seq = Seq("ATCGATCGATCG")
print(f"GC content: {gc_fraction(seq):.2%}")
print(f"Molecular weight: {molecular_weight(seq, seq_type='DNA'):.2f} g/mol")
```

## General Workflow Guidelines

### Reading Documentation

When a user asks about a specific Biopython task:

1. **Identify the relevant module** based on the task description
2. **Read the appropriate reference file** using the Read tool
3. **Extract relevant code patterns** and adapt them to the user's specific needs
4. **Combine multiple modules** when the task requires it

Example search patterns for reference files:
```bash
# Find information about specific functions
grep -n "SeqIO.parse" references/sequence_io.md

# Find examples of specific tasks
grep -n "BLAST" references/blast.md

# Find information about specific concepts
grep -n "alignment" references/alignment.md
```

### Writing Biopython Code

Follow these principles when writing Biopython code:

1. **Import modules explicitly**
   ```python
   from Bio import SeqIO, Entrez
   from Bio.Seq import Seq
   ```

2. **Set Entrez email** when using NCBI databases
   ```python
   Entrez.email = "[email protected]"
   ```

3. **Use appropriate file formats** - Check which format best suits the task
   ```python
   # Common formats: "fasta", "genbank", "fastq", "clustal", "phylip"
   ```

4. **Handle files properly** - Close handles after use or use context managers
   ```python
   with open("file.fasta") as handle:
       records = SeqIO.parse(handle, "fasta")
   ```

5. **Use iterators for large files** - Avoid loading everything into memory
   ```python
   for record in SeqIO.parse("large_file.fasta", "fasta"):
       # Process one record at a time
   ```

6. **Handle errors gracefully** - Network operations and file parsing can fail
   ```python
   try:
       handle = Entrez.efetch(db="nucleotide", id=accession)
   except HTTPError as e:
       print(f"Error: {e}")
   ```

## Common Patterns

### Pattern 1: Fetch Sequence from GenBank

```python
from Bio import Entrez, SeqIO

Entrez.email = "[email protected]"

# Fetch sequence
handle = Entrez.efetch(db="nucleotide", id="EU490707", rettype="gb", retmode="text")
record = SeqIO.read(handle, "genbank")
handle.close()

print(f"Description: {record.description}")
print(f"Sequence length: {len(record.seq)}")
```

### Pattern 2: Sequence Analysis Pipeline

```python
from Bio import SeqIO
from Bio.SeqUtils import gc_fraction

for record in SeqIO.parse("sequences.fasta", "fasta"):
    # Calculate statistics
    gc = gc_fraction(record.seq)
    length = len(record.seq)

    # Find ORFs, translate, etc.
    protein = record.seq.translate()

    print(f"{record.id}: {length} bp, GC={gc:.2%}")
```

### Pattern 3: BLAST and Fetch Top Hits

```python
from Bio.Blast import NCBIWWW, NCBIXML
from Bio import Entrez, SeqIO

Entrez.email = "[email protected]"

# Run BLAST
result_handle = NCBIWWW.qblast("blastn", "nt", sequence)
blast_record = NCBIXML.read(result_handle)

# Get top hit accessions
accessions = [aln.accession for aln in blast_record.alignments[:5]]

# Fetch sequences
for acc in accessions:
    handle = Entrez.efetch(db="nucleotide", id=acc, rettype="fasta", retmode="text")
    record = SeqIO.read(handle, "fasta")
    handle.close()
    print(f">{record.description}")
```

### Pattern 4: Build Phylogenetic Tree from Sequences

```python
from Bio import AlignIO, Phylo
from Bio.Phylo.TreeConstruction import DistanceCalculator, DistanceTreeConstructor

# Read alignment
alignment = AlignIO.read("alignment.fasta", "fasta")

# Calculate distances
calculator = DistanceCalculator("identity")
dm = calculator.get_distance(alignment)

# Build tree
constructor = DistanceTreeConstructor()
tree = constructor.nj(dm)

# Visualize
Phylo.draw_ascii(tree)
```

## Best Practices

1. **Always read relevant reference documentation** before writing code
2. **Use grep to search reference files** for specific functions or examples
3. **Validate file formats** before parsing
4. **Handle missing data gracefully** - Not all records have all fields
5. **Cache downloaded data** - Don't repeatedly download the same sequences
6. **Respect NCBI rate limits** - Use API keys and proper delays
7. **Test with small datasets** before processing large files
8. **Keep Biopython updated** to get latest features and bug fixes
9. **Use appropriate genetic code tables** for translation
10. **Document analysis parameters** for reproducibility

## Troubleshooting Common Issues

### Issue: "No handlers could be found for logger 'Bio.Entrez'"
**Solution:** This is just a warning. Set Entrez.email to suppress it.

### Issue: "HTTP Error 400" from NCBI
**Solution:** Check that IDs/accessions are valid and properly formatted.

### Issue: "ValueError: EOF" when parsing files
**Solution:** Verify file format matches the specified format string.

### Issue: Alignment fails with "sequences are not the same length"
**Solution:** Ensure sequences are aligned before using AlignIO or MultipleSeqAlignment.

### Issue: BLAST searches are slow
**Solution:** Use local BLAST for large-scale searches, or cache results.

### Issue: PDB parser warnings
**Solution:** Use `PDBParser(QUIET=True)` to suppress warnings, or investigate structure quality.

## Additional Resources

- **Official Documentation**: https://biopython.org/docs/latest/
- **Tutorial**: https://biopython.org/docs/latest/Tutorial/
- **Cookbook**: https://biopython.org/docs/latest/Tutorial/ (advanced examples)
- **GitHub**: https://github.com/biopython/biopython
- **Mailing List**: [email protected]

## Quick Reference

To locate information in reference files, use these search patterns:

```bash
# Search for specific functions
grep -n "function_name" references/*.md

# Find examples of specific tasks
grep -n "example" references/sequence_io.md

# Find all occurrences of a module
grep -n "Bio.Seq" references/*.md
```

## Summary

Biopython provides comprehensive tools for computational molecular biology. When using this skill:

1. **Identify the task domain** (sequences, alignments, databases, BLAST, structures, phylogenetics, or advanced)
2. **Consult the appropriate reference file** in the `references/` directory
3. **Adapt code examples** to the specific use case
4. **Combine multiple modules** when needed for complex workflows
5. **Follow best practices** for file handling, error checking, and data management

The modular reference documentation ensures detailed, searchable information for every major Biopython capability.