home / skills / orchestra-research / ai-research-skills / whisper

whisper skill

/18-multimodal/whisper

This skill enables robust multilingual speech-to-text and translation workflows using Whisper across podcasts, meetings, and noisy audio for accurate

npx playbooks add skill orchestra-research/ai-research-skills --skill whisper

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
7.3 KB
---
name: whisper
description: OpenAI's general-purpose speech recognition model. Supports 99 languages, transcription, translation to English, and language identification. Six model sizes from tiny (39M params) to large (1550M params). Use for speech-to-text, podcast transcription, or multilingual audio processing. Best for robust, multilingual ASR.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Whisper, Speech Recognition, ASR, Multimodal, Multilingual, OpenAI, Speech-To-Text, Transcription, Translation, Audio Processing]
dependencies: [openai-whisper, transformers, torch]
---

# Whisper - Robust Speech Recognition

OpenAI's multilingual speech recognition model.

## When to use Whisper

**Use when:**
- Speech-to-text transcription (99 languages)
- Podcast/video transcription
- Meeting notes automation
- Translation to English
- Noisy audio transcription
- Multilingual audio processing

**Metrics**:
- **72,900+ GitHub stars**
- 99 languages supported
- Trained on 680,000 hours of audio
- MIT License

**Use alternatives instead**:
- **AssemblyAI**: Managed API, speaker diarization
- **Deepgram**: Real-time streaming ASR
- **Google Speech-to-Text**: Cloud-based

## Quick start

### Installation

```bash
# Requires Python 3.8-3.11
pip install -U openai-whisper

# Requires ffmpeg
# macOS: brew install ffmpeg
# Ubuntu: sudo apt install ffmpeg
# Windows: choco install ffmpeg
```

### Basic transcription

```python
import whisper

# Load model
model = whisper.load_model("base")

# Transcribe
result = model.transcribe("audio.mp3")

# Print text
print(result["text"])

# Access segments
for segment in result["segments"]:
    print(f"[{segment['start']:.2f}s - {segment['end']:.2f}s] {segment['text']}")
```

## Model sizes

```python
# Available models
models = ["tiny", "base", "small", "medium", "large", "turbo"]

# Load specific model
model = whisper.load_model("turbo")  # Fastest, good quality
```

| Model | Parameters | English-only | Multilingual | Speed | VRAM |
|-------|------------|--------------|--------------|-------|------|
| tiny | 39M | ✓ | ✓ | ~32x | ~1 GB |
| base | 74M | ✓ | ✓ | ~16x | ~1 GB |
| small | 244M | ✓ | ✓ | ~6x | ~2 GB |
| medium | 769M | ✓ | ✓ | ~2x | ~5 GB |
| large | 1550M | ✗ | ✓ | 1x | ~10 GB |
| turbo | 809M | ✗ | ✓ | ~8x | ~6 GB |

**Recommendation**: Use `turbo` for best speed/quality, `base` for prototyping

## Transcription options

### Language specification

```python
# Auto-detect language
result = model.transcribe("audio.mp3")

# Specify language (faster)
result = model.transcribe("audio.mp3", language="en")

# Supported: en, es, fr, de, it, pt, ru, ja, ko, zh, and 89 more
```

### Task selection

```python
# Transcription (default)
result = model.transcribe("audio.mp3", task="transcribe")

# Translation to English
result = model.transcribe("spanish.mp3", task="translate")
# Input: Spanish audio → Output: English text
```

### Initial prompt

```python
# Improve accuracy with context
result = model.transcribe(
    "audio.mp3",
    initial_prompt="This is a technical podcast about machine learning and AI."
)

# Helps with:
# - Technical terms
# - Proper nouns
# - Domain-specific vocabulary
```

### Timestamps

```python
# Word-level timestamps
result = model.transcribe("audio.mp3", word_timestamps=True)

for segment in result["segments"]:
    for word in segment["words"]:
        print(f"{word['word']} ({word['start']:.2f}s - {word['end']:.2f}s)")
```

### Temperature fallback

```python
# Retry with different temperatures if confidence low
result = model.transcribe(
    "audio.mp3",
    temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0)
)
```

## Command line usage

```bash
# Basic transcription
whisper audio.mp3

# Specify model
whisper audio.mp3 --model turbo

# Output formats
whisper audio.mp3 --output_format txt     # Plain text
whisper audio.mp3 --output_format srt     # Subtitles
whisper audio.mp3 --output_format vtt     # WebVTT
whisper audio.mp3 --output_format json    # JSON with timestamps

# Language
whisper audio.mp3 --language Spanish

# Translation
whisper spanish.mp3 --task translate
```

## Batch processing

```python
import os

audio_files = ["file1.mp3", "file2.mp3", "file3.mp3"]

for audio_file in audio_files:
    print(f"Transcribing {audio_file}...")
    result = model.transcribe(audio_file)

    # Save to file
    output_file = audio_file.replace(".mp3", ".txt")
    with open(output_file, "w") as f:
        f.write(result["text"])
```

## Real-time transcription

```python
# For streaming audio, use faster-whisper
# pip install faster-whisper

from faster_whisper import WhisperModel

model = WhisperModel("base", device="cuda", compute_type="float16")

# Transcribe with streaming
segments, info = model.transcribe("audio.mp3", beam_size=5)

for segment in segments:
    print(f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}")
```

## GPU acceleration

```python
import whisper

# Automatically uses GPU if available
model = whisper.load_model("turbo")

# Force CPU
model = whisper.load_model("turbo", device="cpu")

# Force GPU
model = whisper.load_model("turbo", device="cuda")

# 10-20× faster on GPU
```

## Integration with other tools

### Subtitle generation

```bash
# Generate SRT subtitles
whisper video.mp4 --output_format srt --language English

# Output: video.srt
```

### With LangChain

```python
from langchain.document_loaders import WhisperTranscriptionLoader

loader = WhisperTranscriptionLoader(file_path="audio.mp3")
docs = loader.load()

# Use transcription in RAG
from langchain_chroma import Chroma
from langchain_openai import OpenAIEmbeddings

vectorstore = Chroma.from_documents(docs, OpenAIEmbeddings())
```

### Extract audio from video

```bash
# Use ffmpeg to extract audio
ffmpeg -i video.mp4 -vn -acodec pcm_s16le audio.wav

# Then transcribe
whisper audio.wav
```

## Best practices

1. **Use turbo model** - Best speed/quality for English
2. **Specify language** - Faster than auto-detect
3. **Add initial prompt** - Improves technical terms
4. **Use GPU** - 10-20× faster
5. **Batch process** - More efficient
6. **Convert to WAV** - Better compatibility
7. **Split long audio** - <30 min chunks
8. **Check language support** - Quality varies by language
9. **Use faster-whisper** - 4× faster than openai-whisper
10. **Monitor VRAM** - Scale model size to hardware

## Performance

| Model | Real-time factor (CPU) | Real-time factor (GPU) |
|-------|------------------------|------------------------|
| tiny | ~0.32 | ~0.01 |
| base | ~0.16 | ~0.01 |
| turbo | ~0.08 | ~0.01 |
| large | ~1.0 | ~0.05 |

*Real-time factor: 0.1 = 10× faster than real-time*

## Language support

Top-supported languages:
- English (en)
- Spanish (es)
- French (fr)
- German (de)
- Italian (it)
- Portuguese (pt)
- Russian (ru)
- Japanese (ja)
- Korean (ko)
- Chinese (zh)

Full list: 99 languages total

## Limitations

1. **Hallucinations** - May repeat or invent text
2. **Long-form accuracy** - Degrades on >30 min audio
3. **Speaker identification** - No diarization
4. **Accents** - Quality varies
5. **Background noise** - Can affect accuracy
6. **Real-time latency** - Not suitable for live captioning

## Resources

- **GitHub**: https://github.com/openai/whisper ⭐ 72,900+
- **Paper**: https://arxiv.org/abs/2212.04356
- **Model Card**: https://github.com/openai/whisper/blob/main/model-card.md
- **Colab**: Available in repo
- **License**: MIT


Overview

This skill exposes Whisper, OpenAI’s robust multilingual speech recognition model for reliable speech-to-text and translation. It supports 99 languages, multiple model sizes from tiny to large (and turbo), and offers transcription, translation to English, language identification, and timestamped segments. Use it to transcribe audio, generate subtitles, or preprocess multilingual speech for downstream NLP tasks. It is optimized for accuracy and practical integration across batch and streaming workflows.

How this skill works

Load a chosen model size and call transcribe on audio files or streams. The model auto-detects language by default, or you can pass a language and task (transcribe or translate) for faster, targeted results. Outputs include full text, segment-level timestamps, optional word-level timestamps, and confidence information; you can also retry with temperature fallbacks to improve low-confidence segments. GPU acceleration and faster-whisper support enable significantly faster throughput for large workloads.

When to use it

  • Transcribing podcasts, interviews, or lecture recordings into searchable text
  • Generating subtitles (SRT, VTT) or JSON with timestamps for video workflows
  • Translating non-English audio to English for accessibility or analysis
  • Batch-processing large audio libraries for indexing or archival
  • Preprocessing audio for RAG, search, or downstream language models

Best practices

  • Choose model size based on hardware and latency: turbo for best speed/quality, base for fast prototyping
  • Specify language when known to speed up and stabilize results
  • Use an initial_prompt for domain-specific vocabulary and proper nouns
  • Run on GPU or use faster-whisper for much higher throughput
  • Split long recordings into <30 minute chunks and convert to WAV for compatibility
  • Monitor VRAM and select smaller models for constrained hardware

Example use cases

  • Automatically generate meeting notes and time-aligned action items from recorded calls
  • Create captions and translated subtitles for multilingual video content
  • Index and transcribe audio assets for search and content recommendation
  • Streamline dataset labeling by producing transcripts with word-level timestamps
  • Translate field interviews in many languages to English for analysis

FAQ

Which model should I pick for production?

Use turbo for the best balance of speed and accuracy; use large only if you need the highest accuracy and have sufficient VRAM.

Does Whisper provide speaker diarization?

No. Whisper does not include speaker identification or diarization; combine with a diarization tool if you need speaker labels.