home / skills / orchestra-research / ai-research-skills / torchtitan
This skill enables scalable pretraining of large language models using PyTorch Torchtitan 4D parallelism across GPUs, delivering faster training with efficient
npx playbooks add skill orchestra-research/ai-research-skills --skill torchtitanReview the files below or copy the command above to add this skill to your agents.
---
name: distributed-llm-pretraining-torchtitan
description: Provides PyTorch-native distributed LLM pretraining using torchtitan with 4D parallelism (FSDP2, TP, PP, CP). Use when pretraining Llama 3.1, DeepSeek V3, or custom models at scale from 8 to 512+ GPUs with Float8, torch.compile, and distributed checkpointing.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Model Architecture, Distributed Training, TorchTitan, FSDP2, Tensor Parallel, Pipeline Parallel, Context Parallel, Float8, Llama, Pretraining]
dependencies: [torch>=2.6.0, torchtitan>=0.2.0, torchao>=0.5.0]
---
# TorchTitan - PyTorch Native Distributed LLM Pretraining
## Quick start
TorchTitan is PyTorch's official platform for large-scale LLM pretraining with composable 4D parallelism (FSDP2, TP, PP, CP), achieving 65%+ speedups over baselines on H100 GPUs.
**Installation**:
```bash
# From PyPI (stable)
pip install torchtitan
# From source (latest features, requires PyTorch nightly)
git clone https://github.com/pytorch/torchtitan
cd torchtitan
pip install -r requirements.txt
```
**Download tokenizer**:
```bash
# Get HF token from https://huggingface.co/settings/tokens
python scripts/download_hf_assets.py --repo_id meta-llama/Llama-3.1-8B --assets tokenizer --hf_token=...
```
**Start training on 8 GPUs**:
```bash
CONFIG_FILE="./torchtitan/models/llama3/train_configs/llama3_8b.toml" ./run_train.sh
```
## Common workflows
### Workflow 1: Pretrain Llama 3.1 8B on single node
Copy this checklist:
```
Single Node Pretraining:
- [ ] Step 1: Download tokenizer
- [ ] Step 2: Configure training
- [ ] Step 3: Launch training
- [ ] Step 4: Monitor and checkpoint
```
**Step 1: Download tokenizer**
```bash
python scripts/download_hf_assets.py \
--repo_id meta-llama/Llama-3.1-8B \
--assets tokenizer \
--hf_token=YOUR_HF_TOKEN
```
**Step 2: Configure training**
Edit or create a TOML config file:
```toml
# llama3_8b_custom.toml
[job]
dump_folder = "./outputs"
description = "Llama 3.1 8B training"
[model]
name = "llama3"
flavor = "8B"
hf_assets_path = "./assets/hf/Llama-3.1-8B"
[optimizer]
name = "AdamW"
lr = 3e-4
[lr_scheduler]
warmup_steps = 200
[training]
local_batch_size = 2
seq_len = 8192
max_norm = 1.0
steps = 1000
dataset = "c4"
[parallelism]
data_parallel_shard_degree = -1 # Use all GPUs for FSDP
[activation_checkpoint]
mode = "selective"
selective_ac_option = "op"
[checkpoint]
enable = true
folder = "checkpoint"
interval = 500
```
**Step 3: Launch training**
```bash
# 8 GPUs on single node
CONFIG_FILE="./llama3_8b_custom.toml" ./run_train.sh
# Or explicitly with torchrun
torchrun --nproc_per_node=8 \
-m torchtitan.train \
--job.config_file ./llama3_8b_custom.toml
```
**Step 4: Monitor and checkpoint**
TensorBoard logs are saved to `./outputs/tb/`:
```bash
tensorboard --logdir ./outputs/tb
```
### Workflow 2: Multi-node training with SLURM
```
Multi-Node Training:
- [ ] Step 1: Configure parallelism for scale
- [ ] Step 2: Set up SLURM script
- [ ] Step 3: Submit job
- [ ] Step 4: Resume from checkpoint
```
**Step 1: Configure parallelism for scale**
For 70B model on 256 GPUs (32 nodes):
```toml
[parallelism]
data_parallel_shard_degree = 32 # FSDP across 32 ranks
tensor_parallel_degree = 8 # TP within node
pipeline_parallel_degree = 1 # No PP for 70B
context_parallel_degree = 1 # Increase for long sequences
```
**Step 2: Set up SLURM script**
```bash
#!/bin/bash
#SBATCH --job-name=llama70b
#SBATCH --nodes=32
#SBATCH --ntasks-per-node=8
#SBATCH --gpus-per-node=8
srun torchrun \
--nnodes=32 \
--nproc_per_node=8 \
--rdzv_backend=c10d \
--rdzv_endpoint=$MASTER_ADDR:$MASTER_PORT \
-m torchtitan.train \
--job.config_file ./llama3_70b.toml
```
**Step 3: Submit job**
```bash
sbatch multinode_trainer.slurm
```
**Step 4: Resume from checkpoint**
Training auto-resumes if checkpoint exists in configured folder.
### Workflow 3: Enable Float8 training for H100s
Float8 provides 30-50% speedup on H100 GPUs.
```
Float8 Training:
- [ ] Step 1: Install torchao
- [ ] Step 2: Configure Float8
- [ ] Step 3: Launch with compile
```
**Step 1: Install torchao**
```bash
USE_CPP=0 pip install git+https://github.com/pytorch/ao.git
```
**Step 2: Configure Float8**
Add to your TOML config:
```toml
[model]
converters = ["quantize.linear.float8"]
[quantize.linear.float8]
enable_fsdp_float8_all_gather = true
precompute_float8_dynamic_scale_for_fsdp = true
filter_fqns = ["output"] # Exclude output layer
[compile]
enable = true
components = ["model", "loss"]
```
**Step 3: Launch with compile**
```bash
CONFIG_FILE="./llama3_8b.toml" ./run_train.sh \
--model.converters="quantize.linear.float8" \
--quantize.linear.float8.enable_fsdp_float8_all_gather \
--compile.enable
```
### Workflow 4: 4D parallelism for 405B models
```
4D Parallelism (FSDP + TP + PP + CP):
- [ ] Step 1: Create seed checkpoint
- [ ] Step 2: Configure 4D parallelism
- [ ] Step 3: Launch on 512 GPUs
```
**Step 1: Create seed checkpoint**
Required for consistent initialization across PP stages:
```bash
NGPU=1 CONFIG_FILE=./llama3_405b.toml ./run_train.sh \
--checkpoint.enable \
--checkpoint.create_seed_checkpoint \
--parallelism.data_parallel_shard_degree 1 \
--parallelism.tensor_parallel_degree 1 \
--parallelism.pipeline_parallel_degree 1
```
**Step 2: Configure 4D parallelism**
```toml
[parallelism]
data_parallel_shard_degree = 8 # FSDP
tensor_parallel_degree = 8 # TP within node
pipeline_parallel_degree = 8 # PP across nodes
context_parallel_degree = 1 # CP for long sequences
[training]
local_batch_size = 32
seq_len = 8192
```
**Step 3: Launch on 512 GPUs**
```bash
# 64 nodes x 8 GPUs = 512 GPUs
srun torchrun --nnodes=64 --nproc_per_node=8 \
-m torchtitan.train \
--job.config_file ./llama3_405b.toml
```
## When to use vs alternatives
**Use TorchTitan when:**
- Pretraining LLMs from scratch (8B to 405B+)
- Need PyTorch-native solution without third-party dependencies
- Require composable 4D parallelism (FSDP2, TP, PP, CP)
- Training on H100s with Float8 support
- Want interoperable checkpoints with torchtune/HuggingFace
**Use alternatives instead:**
- **Megatron-LM**: Maximum performance for NVIDIA-only deployments
- **DeepSpeed**: Broader ZeRO optimization ecosystem, inference support
- **Axolotl/TRL**: Fine-tuning rather than pretraining
- **LitGPT**: Educational, smaller-scale training
## Common issues
**Issue: Out of memory on large models**
Enable activation checkpointing and reduce batch size:
```toml
[activation_checkpoint]
mode = "full" # Instead of "selective"
[training]
local_batch_size = 1
```
Or use gradient accumulation:
```toml
[training]
local_batch_size = 1
global_batch_size = 32 # Accumulates gradients
```
**Issue: TP causes high memory with async collectives**
Set environment variable:
```bash
export TORCH_NCCL_AVOID_RECORD_STREAMS=1
```
**Issue: Float8 training not faster**
Float8 only benefits large GEMMs. Filter small layers:
```toml
[quantize.linear.float8]
filter_fqns = ["attention.wk", "attention.wv", "output", "auto_filter_small_kn"]
```
**Issue: Checkpoint loading fails after parallelism change**
Use DCP's resharding capability:
```bash
# Convert sharded checkpoint to single file
python -m torch.distributed.checkpoint.format_utils \
dcp_to_torch checkpoint/step-1000 checkpoint.pt
```
**Issue: Pipeline parallelism initialization**
Create seed checkpoint first (see Workflow 4, Step 1).
## Supported models
| Model | Sizes | Status |
|-------|-------|--------|
| Llama 3.1 | 8B, 70B, 405B | Production |
| Llama 4 | Various | Experimental |
| DeepSeek V3 | 16B, 236B, 671B (MoE) | Experimental |
| GPT-OSS | 20B, 120B (MoE) | Experimental |
| Qwen 3 | Various | Experimental |
| Flux | Diffusion | Experimental |
## Performance benchmarks (H100)
| Model | GPUs | Parallelism | TPS/GPU | Techniques |
|-------|------|-------------|---------|------------|
| Llama 8B | 8 | FSDP | 5,762 | Baseline |
| Llama 8B | 8 | FSDP+compile+FP8 | 8,532 | +48% |
| Llama 70B | 256 | FSDP+TP+AsyncTP | 876 | 2D parallel |
| Llama 405B | 512 | FSDP+TP+PP | 128 | 3D parallel |
## Advanced topics
**FSDP2 configuration**: See [references/fsdp.md](references/fsdp.md) for detailed FSDP2 vs FSDP1 comparison and ZeRO equivalents.
**Float8 training**: See [references/float8.md](references/float8.md) for tensorwise vs rowwise scaling recipes.
**Checkpointing**: See [references/checkpoint.md](references/checkpoint.md) for HuggingFace conversion and async checkpointing.
**Adding custom models**: See [references/custom-models.md](references/custom-models.md) for TrainSpec protocol.
## Resources
- GitHub: https://github.com/pytorch/torchtitan
- Paper: https://arxiv.org/abs/2410.06511
- ICLR 2025: https://iclr.cc/virtual/2025/poster/29620
- PyTorch Forum: https://discuss.pytorch.org/c/distributed/torchtitan/44
This skill provides PyTorch-native distributed LLM pretraining using TorchTitan with composable 4D parallelism (FSDP2, tensor parallelism, pipeline parallelism, context parallelism). It scales from single-node 8 GPUs up to 512+ GPUs and supports Float8, torch.compile, and robust distributed checkpointing for models like Llama 3.1 and DeepSeek V3. The skill is focused on production-grade pretraining performance and interoperability with Hugging Face formats.
The skill configures and launches large-scale training jobs via TOML job configs and torchrun/srun wrappers, orchestrating FSDP2, TP, PP and CP degrees across nodes and GPUs. It automates tokenizer and HF asset downloads, enables Float8 through torchao converters, and integrates torch.compile for faster kernels. Checkpointing and seed-checkpoint creation support consistent PP initialization and resuming across different parallelism layouts.
Does TorchTitan support resuming after changing parallelism degrees?
Yes — use distributed checkpointing (DCP) resharding utilities to convert or reshard checkpoints so training can resume after parallelism changes.
When should I enable Float8?
Enable Float8 on H100s for large GEMMs; configure converters to exclude small layers and validate accuracy and speed on a smaller test run first.