home / skills / orchestra-research / ai-research-skills / tensorboard

tensorboard skill

/13-mlops/tensorboard

This skill helps you visualize training metrics, debug models, compare experiments, and profile performance with TensorBoard.

npx playbooks add skill orchestra-research/ai-research-skills --skill tensorboard

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
14.9 KB
---
name: tensorboard
description: Visualize training metrics, debug models with histograms, compare experiments, visualize model graphs, and profile performance with TensorBoard - Google's ML visualization toolkit
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [MLOps, TensorBoard, Visualization, Training Metrics, Model Debugging, PyTorch, TensorFlow, Experiment Tracking, Performance Profiling]
dependencies: [tensorboard, torch, tensorflow]
---

# TensorBoard: Visualization Toolkit for ML

## When to Use This Skill

Use TensorBoard when you need to:
- **Visualize training metrics** like loss and accuracy over time
- **Debug models** with histograms and distributions
- **Compare experiments** across multiple runs
- **Visualize model graphs** and architecture
- **Project embeddings** to lower dimensions (t-SNE, PCA)
- **Track hyperparameter** experiments
- **Profile performance** and identify bottlenecks
- **Visualize images and text** during training

**Users**: 20M+ downloads/year | **GitHub Stars**: 27k+ | **License**: Apache 2.0

## Installation

```bash
# Install TensorBoard
pip install tensorboard

# PyTorch integration
pip install torch torchvision tensorboard

# TensorFlow integration (TensorBoard included)
pip install tensorflow

# Launch TensorBoard
tensorboard --logdir=runs
# Access at http://localhost:6006
```

## Quick Start

### PyTorch

```python
from torch.utils.tensorboard import SummaryWriter

# Create writer
writer = SummaryWriter('runs/experiment_1')

# Training loop
for epoch in range(10):
    train_loss = train_epoch()
    val_acc = validate()

    # Log metrics
    writer.add_scalar('Loss/train', train_loss, epoch)
    writer.add_scalar('Accuracy/val', val_acc, epoch)

# Close writer
writer.close()

# Launch: tensorboard --logdir=runs
```

### TensorFlow/Keras

```python
import tensorflow as tf

# Create callback
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir='logs/fit',
    histogram_freq=1
)

# Train model
model.fit(
    x_train, y_train,
    epochs=10,
    validation_data=(x_val, y_val),
    callbacks=[tensorboard_callback]
)

# Launch: tensorboard --logdir=logs
```

## Core Concepts

### 1. SummaryWriter (PyTorch)

```python
from torch.utils.tensorboard import SummaryWriter

# Default directory: runs/CURRENT_DATETIME
writer = SummaryWriter()

# Custom directory
writer = SummaryWriter('runs/experiment_1')

# Custom comment (appended to default directory)
writer = SummaryWriter(comment='baseline')

# Log data
writer.add_scalar('Loss/train', 0.5, step=0)
writer.add_scalar('Loss/train', 0.3, step=1)

# Flush and close
writer.flush()
writer.close()
```

### 2. Logging Scalars

```python
# PyTorch
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter()

for epoch in range(100):
    train_loss = train()
    val_loss = validate()

    # Log individual metrics
    writer.add_scalar('Loss/train', train_loss, epoch)
    writer.add_scalar('Loss/val', val_loss, epoch)
    writer.add_scalar('Accuracy/train', train_acc, epoch)
    writer.add_scalar('Accuracy/val', val_acc, epoch)

    # Learning rate
    lr = optimizer.param_groups[0]['lr']
    writer.add_scalar('Learning_rate', lr, epoch)

writer.close()
```

```python
# TensorFlow
import tensorflow as tf

train_summary_writer = tf.summary.create_file_writer('logs/train')
val_summary_writer = tf.summary.create_file_writer('logs/val')

for epoch in range(100):
    with train_summary_writer.as_default():
        tf.summary.scalar('loss', train_loss, step=epoch)
        tf.summary.scalar('accuracy', train_acc, step=epoch)

    with val_summary_writer.as_default():
        tf.summary.scalar('loss', val_loss, step=epoch)
        tf.summary.scalar('accuracy', val_acc, step=epoch)
```

### 3. Logging Multiple Scalars

```python
# PyTorch: Group related metrics
writer.add_scalars('Loss', {
    'train': train_loss,
    'validation': val_loss,
    'test': test_loss
}, epoch)

writer.add_scalars('Metrics', {
    'accuracy': accuracy,
    'precision': precision,
    'recall': recall,
    'f1': f1_score
}, epoch)
```

### 4. Logging Images

```python
# PyTorch
import torch
from torchvision.utils import make_grid

# Single image
writer.add_image('Input/sample', img_tensor, epoch)

# Multiple images as grid
img_grid = make_grid(images[:64], nrow=8)
writer.add_image('Batch/inputs', img_grid, epoch)

# Predictions visualization
pred_grid = make_grid(predictions[:16], nrow=4)
writer.add_image('Predictions', pred_grid, epoch)
```

```python
# TensorFlow
import tensorflow as tf

with file_writer.as_default():
    # Encode images as PNG
    tf.summary.image('Training samples', images, step=epoch, max_outputs=25)
```

### 5. Logging Histograms

```python
# PyTorch: Track weight distributions
for name, param in model.named_parameters():
    writer.add_histogram(name, param, epoch)

    # Track gradients
    if param.grad is not None:
        writer.add_histogram(f'{name}.grad', param.grad, epoch)

# Track activations
writer.add_histogram('Activations/relu1', activations, epoch)
```

```python
# TensorFlow
with file_writer.as_default():
    tf.summary.histogram('weights/layer1', layer1.kernel, step=epoch)
    tf.summary.histogram('activations/relu1', activations, step=epoch)
```

### 6. Logging Model Graph

```python
# PyTorch
import torch

model = MyModel()
dummy_input = torch.randn(1, 3, 224, 224)

writer.add_graph(model, dummy_input)
writer.close()
```

```python
# TensorFlow (automatic with Keras)
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir='logs',
    write_graph=True
)

model.fit(x, y, callbacks=[tensorboard_callback])
```

## Advanced Features

### Embedding Projector

Visualize high-dimensional data (embeddings, features) in 2D/3D.

```python
import torch
from torch.utils.tensorboard import SummaryWriter

# Get embeddings (e.g., word embeddings, image features)
embeddings = model.get_embeddings(data)  # Shape: (N, embedding_dim)

# Metadata (labels for each point)
metadata = ['class_1', 'class_2', 'class_1', ...]

# Images (optional, for image embeddings)
label_images = torch.stack([img1, img2, img3, ...])

# Log to TensorBoard
writer.add_embedding(
    embeddings,
    metadata=metadata,
    label_img=label_images,
    global_step=epoch
)
```

**In TensorBoard:**
- Navigate to "Projector" tab
- Choose PCA, t-SNE, or UMAP visualization
- Search, filter, and explore clusters

### Hyperparameter Tuning

```python
from torch.utils.tensorboard import SummaryWriter

# Try different hyperparameters
for lr in [0.001, 0.01, 0.1]:
    for batch_size in [16, 32, 64]:
        # Create unique run directory
        writer = SummaryWriter(f'runs/lr{lr}_bs{batch_size}')

        # Log hyperparameters
        writer.add_hparams(
            {'lr': lr, 'batch_size': batch_size},
            {'hparam/accuracy': final_acc, 'hparam/loss': final_loss}
        )

        # Train and log
        for epoch in range(10):
            loss = train(lr, batch_size)
            writer.add_scalar('Loss/train', loss, epoch)

        writer.close()

# Compare in TensorBoard's "HParams" tab
```

### Text Logging

```python
# PyTorch: Log text (e.g., model predictions, summaries)
writer.add_text('Predictions', f'Epoch {epoch}: {predictions}', epoch)
writer.add_text('Config', str(config), 0)

# Log markdown tables
markdown_table = """
| Metric | Value |
|--------|-------|
| Accuracy | 0.95 |
| F1 Score | 0.93 |
"""
writer.add_text('Results', markdown_table, epoch)
```

### PR Curves

Precision-Recall curves for classification.

```python
from torch.utils.tensorboard import SummaryWriter

# Get predictions and labels
predictions = model(test_data)  # Shape: (N, num_classes)
labels = test_labels  # Shape: (N,)

# Log PR curve for each class
for i in range(num_classes):
    writer.add_pr_curve(
        f'PR_curve/class_{i}',
        labels == i,
        predictions[:, i],
        global_step=epoch
    )
```

## Integration Examples

### PyTorch Training Loop

```python
import torch
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter

# Setup
writer = SummaryWriter('runs/resnet_experiment')
model = ResNet50()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()

# Log model graph
dummy_input = torch.randn(1, 3, 224, 224)
writer.add_graph(model, dummy_input)

# Training loop
for epoch in range(50):
    model.train()
    train_loss = 0.0
    train_correct = 0

    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()

        train_loss += loss.item()
        pred = output.argmax(dim=1)
        train_correct += pred.eq(target).sum().item()

        # Log batch metrics (every 100 batches)
        if batch_idx % 100 == 0:
            global_step = epoch * len(train_loader) + batch_idx
            writer.add_scalar('Loss/train_batch', loss.item(), global_step)

    # Epoch metrics
    train_loss /= len(train_loader)
    train_acc = train_correct / len(train_loader.dataset)

    # Validation
    model.eval()
    val_loss = 0.0
    val_correct = 0

    with torch.no_grad():
        for data, target in val_loader:
            output = model(data)
            val_loss += criterion(output, target).item()
            pred = output.argmax(dim=1)
            val_correct += pred.eq(target).sum().item()

    val_loss /= len(val_loader)
    val_acc = val_correct / len(val_loader.dataset)

    # Log epoch metrics
    writer.add_scalars('Loss', {'train': train_loss, 'val': val_loss}, epoch)
    writer.add_scalars('Accuracy', {'train': train_acc, 'val': val_acc}, epoch)

    # Log learning rate
    writer.add_scalar('Learning_rate', optimizer.param_groups[0]['lr'], epoch)

    # Log histograms (every 5 epochs)
    if epoch % 5 == 0:
        for name, param in model.named_parameters():
            writer.add_histogram(name, param, epoch)

    # Log sample predictions
    if epoch % 10 == 0:
        sample_images = data[:8]
        writer.add_image('Sample_inputs', make_grid(sample_images), epoch)

writer.close()
```

### TensorFlow/Keras Training

```python
import tensorflow as tf

# Define model
model = tf.keras.models.Sequential([
    tf.keras.layers.Conv2D(32, 3, activation='relu', input_shape=(28, 28, 1)),
    tf.keras.layers.MaxPooling2D(),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(
    optimizer='adam',
    loss='sparse_categorical_crossentropy',
    metrics=['accuracy']
)

# TensorBoard callback
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir='logs/fit',
    histogram_freq=1,          # Log histograms every epoch
    write_graph=True,          # Visualize model graph
    write_images=True,         # Visualize weights as images
    update_freq='epoch',       # Log metrics every epoch
    profile_batch='500,520',   # Profile batches 500-520
    embeddings_freq=1          # Log embeddings every epoch
)

# Train
model.fit(
    x_train, y_train,
    epochs=10,
    validation_data=(x_val, y_val),
    callbacks=[tensorboard_callback]
)
```

## Comparing Experiments

### Multiple Runs

```bash
# Run experiments with different configs
python train.py --lr 0.001 --logdir runs/exp1
python train.py --lr 0.01 --logdir runs/exp2
python train.py --lr 0.1 --logdir runs/exp3

# View all runs together
tensorboard --logdir=runs
```

**In TensorBoard:**
- All runs appear in the same dashboard
- Toggle runs on/off for comparison
- Use regex to filter run names
- Overlay charts to compare metrics

### Organizing Experiments

```python
# Hierarchical organization
runs/
├── baseline/
│   ├── run_1/
│   └── run_2/
├── improved/
│   ├── run_1/
│   └── run_2/
└── final/
    └── run_1/

# Log with hierarchy
writer = SummaryWriter('runs/baseline/run_1')
```

## Best Practices

### 1. Use Descriptive Run Names

```python
# ✅ Good: Descriptive names
from datetime import datetime
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
writer = SummaryWriter(f'runs/resnet50_lr0.001_bs32_{timestamp}')

# ❌ Bad: Auto-generated names
writer = SummaryWriter()  # Creates runs/Jan01_12-34-56_hostname
```

### 2. Group Related Metrics

```python
# ✅ Good: Grouped metrics
writer.add_scalar('Loss/train', train_loss, step)
writer.add_scalar('Loss/val', val_loss, step)
writer.add_scalar('Accuracy/train', train_acc, step)
writer.add_scalar('Accuracy/val', val_acc, step)

# ❌ Bad: Flat namespace
writer.add_scalar('train_loss', train_loss, step)
writer.add_scalar('val_loss', val_loss, step)
```

### 3. Log Regularly but Not Too Often

```python
# ✅ Good: Log epoch metrics always, batch metrics occasionally
for epoch in range(100):
    for batch_idx, (data, target) in enumerate(train_loader):
        loss = train_step(data, target)

        # Log every 100 batches
        if batch_idx % 100 == 0:
            writer.add_scalar('Loss/batch', loss, global_step)

    # Always log epoch metrics
    writer.add_scalar('Loss/epoch', epoch_loss, epoch)

# ❌ Bad: Log every batch (creates huge log files)
for batch in train_loader:
    writer.add_scalar('Loss', loss, step)  # Too frequent
```

### 4. Close Writer When Done

```python
# ✅ Good: Use context manager
with SummaryWriter('runs/exp1') as writer:
    for epoch in range(10):
        writer.add_scalar('Loss', loss, epoch)
# Automatically closes

# Or manually
writer = SummaryWriter('runs/exp1')
# ... logging ...
writer.close()
```

### 5. Use Separate Writers for Train/Val

```python
# ✅ Good: Separate log directories
train_writer = SummaryWriter('runs/exp1/train')
val_writer = SummaryWriter('runs/exp1/val')

train_writer.add_scalar('loss', train_loss, epoch)
val_writer.add_scalar('loss', val_loss, epoch)
```

## Performance Profiling

### TensorFlow Profiler

```python
# Enable profiling
tensorboard_callback = tf.keras.callbacks.TensorBoard(
    log_dir='logs',
    profile_batch='10,20'  # Profile batches 10-20
)

model.fit(x, y, callbacks=[tensorboard_callback])

# View in TensorBoard Profile tab
# Shows: GPU utilization, kernel stats, memory usage, bottlenecks
```

### PyTorch Profiler

```python
import torch.profiler as profiler

with profiler.profile(
    activities=[
        profiler.ProfilerActivity.CPU,
        profiler.ProfilerActivity.CUDA
    ],
    on_trace_ready=torch.profiler.tensorboard_trace_handler('./runs/profiler'),
    record_shapes=True,
    with_stack=True
) as prof:
    for batch in train_loader:
        loss = train_step(batch)
        prof.step()

# View in TensorBoard Profile tab
```

## Resources

- **Documentation**: https://www.tensorflow.org/tensorboard
- **PyTorch Integration**: https://pytorch.org/docs/stable/tensorboard.html
- **GitHub**: https://github.com/tensorflow/tensorboard (27k+ stars)
- **TensorBoard.dev**: https://tensorboard.dev (share experiments publicly)

## See Also

- `references/visualization.md` - Comprehensive visualization guide
- `references/profiling.md` - Performance profiling patterns
- `references/integrations.md` - Framework-specific integration examples


Overview

This skill provides a practical guide to using TensorBoard to visualize training metrics, inspect model internals, compare experiments, and profile performance. It covers core APIs for PyTorch and TensorFlow, logging best practices, and advanced features like the Embedding Projector and performance profiling. Followable examples show how to integrate TensorBoard into training loops and organize run logs for reproducible comparisons.

How this skill works

TensorBoard reads event files written by SummaryWriter (PyTorch) or tf.summary (TensorFlow) and renders dashboards for scalars, histograms, images, text, PR curves, embeddings, and model graphs. Launch a local server pointing at a log directory (tensorboard --logdir=PATH) to explore time series, compare runs, inspect weight/gradient distributions, and view profiler traces for CPU/GPU bottlenecks. Writers flush structured summaries that TensorBoard consumes for visualization and analysis.

When to use it

  • Track training and validation metrics (loss, accuracy) over epochs and batches
  • Debug model behavior via histograms of weights, gradients, and activations
  • Compare hyperparameter runs and overlay metrics to find best configurations
  • Visualize model architecture and intermediate feature embeddings (Projector)
  • Profile training performance to identify CPU/GPU or memory bottlenecks

Best practices

  • Use descriptive, hierarchical run names (model_lr_bs_timestamp) to make comparisons clear
  • Group related metrics under the same tag namespace (e.g., Loss/train, Loss/val)
  • Log epoch-level metrics every epoch and batch-level metrics sparingly to limit log size
  • Close or use a context manager for writers to ensure all events are flushed
  • Separate train/validation writers or directories to simplify dashboards and filtering

Example use cases

  • Add SummaryWriter to a PyTorch training loop to log loss, accuracy, learning rate, and weight histograms
  • Use tf.keras.callbacks.TensorBoard to write graphs, histograms, images, and profiler traces during model.fit
  • Run multiple experiments with unique logdirs and view them together to compare hyperparameters
  • Project embeddings from a model to inspect class clusters with t-SNE or PCA in the Projector tab
  • Enable profiler_batch ranges to capture GPU kernels and memory usage for performance tuning

FAQ

How do I view multiple experiments in one dashboard?

Write each experiment to a separate subdirectory under a common root and launch tensorboard --logdir=root; toggle runs on/off or use regex filters to compare.

How often should I log metrics?

Log epoch metrics every epoch and batch metrics only occasionally (for example, every 100 batches) to keep log sizes manageable while retaining useful granularity.