home / skills / orchestra-research / ai-research-skills / sglang
This skill speeds up structured generation and agent workflows with prefix caching for JSON outputs and tool calls, boosting latency and throughput.
npx playbooks add skill orchestra-research/ai-research-skills --skill sglangReview the files below or copy the command above to add this skill to your agents.
---
name: sglang
description: Fast structured generation and serving for LLMs with RadixAttention prefix caching. Use for JSON/regex outputs, constrained decoding, agentic workflows with tool calls, or when you need 5× faster inference than vLLM with prefix sharing. Powers 300,000+ GPUs at xAI, AMD, NVIDIA, and LinkedIn.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Inference Serving, SGLang, Structured Generation, RadixAttention, Prefix Caching, Constrained Decoding, Agents, JSON Output, Fast Inference, Production Scale]
dependencies: [sglang, torch, transformers]
---
# SGLang
High-performance serving framework for LLMs and VLMs with RadixAttention for automatic prefix caching.
## When to use SGLang
**Use SGLang when:**
- Need structured outputs (JSON, regex, grammar)
- Building agents with repeated prefixes (system prompts, tools)
- Agentic workflows with function calling
- Multi-turn conversations with shared context
- Need faster JSON decoding (3× vs standard)
**Use vLLM instead when:**
- Simple text generation without structure
- Don't need prefix caching
- Want mature, widely-tested production system
**Use TensorRT-LLM instead when:**
- Maximum single-request latency (no batching needed)
- NVIDIA-only deployment
- Need FP8/INT4 quantization on H100
## Quick start
### Installation
```bash
# pip install (recommended)
pip install "sglang[all]"
# With FlashInfer (faster, CUDA 11.8/12.1)
pip install sglang[all] flashinfer -i https://flashinfer.ai/whl/cu121/torch2.4/
# From source
git clone https://github.com/sgl-project/sglang.git
cd sglang
pip install -e "python[all]"
```
### Launch server
```bash
# Basic server (Llama 3-8B)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-8B-Instruct \
--port 30000
# With RadixAttention (automatic prefix caching)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-8B-Instruct \
--port 30000 \
--enable-radix-cache # Default: enabled
# Multi-GPU (tensor parallelism)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-70B-Instruct \
--tp 4 \
--port 30000
```
### Basic inference
```python
import sglang as sgl
# Set backend
sgl.set_default_backend(sgl.OpenAI("http://localhost:30000/v1"))
# Simple generation
@sgl.function
def simple_gen(s, question):
s += "Q: " + question + "\n"
s += "A:" + sgl.gen("answer", max_tokens=100)
# Run
state = simple_gen.run(question="What is the capital of France?")
print(state["answer"])
# Output: "The capital of France is Paris."
```
### Structured JSON output
```python
import sglang as sgl
@sgl.function
def extract_person(s, text):
s += f"Extract person information from: {text}\n"
s += "Output JSON:\n"
# Constrained JSON generation
s += sgl.gen(
"json_output",
max_tokens=200,
regex=r'\{"name": "[^"]+", "age": \d+, "occupation": "[^"]+"\}'
)
# Run
state = extract_person.run(
text="John Smith is a 35-year-old software engineer."
)
print(state["json_output"])
# Output: {"name": "John Smith", "age": 35, "occupation": "software engineer"}
```
## RadixAttention (Key Innovation)
**What it does**: Automatically caches and reuses common prefixes across requests.
**Performance**:
- **5× faster** for agentic workloads with shared system prompts
- **10× faster** for few-shot prompting with repeated examples
- **Zero configuration** - works automatically
**How it works**:
1. Builds radix tree of all processed tokens
2. Automatically detects shared prefixes
3. Reuses KV cache for matching prefixes
4. Only computes new tokens
**Example** (Agent with system prompt):
```
Request 1: [SYSTEM_PROMPT] + "What's the weather?"
→ Computes full prompt (1000 tokens)
Request 2: [SAME_SYSTEM_PROMPT] + "Book a flight"
→ Reuses system prompt KV cache (998 tokens)
→ Only computes 2 new tokens
→ 5× faster!
```
## Structured generation patterns
### JSON with schema
```python
@sgl.function
def structured_extraction(s, article):
s += f"Article: {article}\n\n"
s += "Extract key information as JSON:\n"
# JSON schema constraint
schema = {
"type": "object",
"properties": {
"title": {"type": "string"},
"author": {"type": "string"},
"summary": {"type": "string"},
"sentiment": {"type": "string", "enum": ["positive", "negative", "neutral"]}
},
"required": ["title", "author", "summary", "sentiment"]
}
s += sgl.gen("info", max_tokens=300, json_schema=schema)
state = structured_extraction.run(article="...")
print(state["info"])
# Output: Valid JSON matching schema
```
### Regex-constrained generation
```python
@sgl.function
def extract_email(s, text):
s += f"Extract email from: {text}\n"
s += "Email: "
# Email regex pattern
s += sgl.gen(
"email",
max_tokens=50,
regex=r'[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}'
)
state = extract_email.run(text="Contact [email protected] for details")
print(state["email"])
# Output: "[email protected]"
```
### Grammar-based generation
```python
@sgl.function
def generate_code(s, description):
s += f"Generate Python code for: {description}\n"
s += "```python\n"
# EBNF grammar for Python
python_grammar = """
?start: function_def
function_def: "def" NAME "(" [parameters] "):" suite
parameters: parameter ("," parameter)*
parameter: NAME
suite: simple_stmt | NEWLINE INDENT stmt+ DEDENT
"""
s += sgl.gen("code", max_tokens=200, grammar=python_grammar)
s += "\n```"
```
## Agent workflows with function calling
```python
import sglang as sgl
# Define tools
tools = [
{
"name": "get_weather",
"description": "Get weather for a location",
"parameters": {
"type": "object",
"properties": {
"location": {"type": "string"}
}
}
},
{
"name": "book_flight",
"description": "Book a flight",
"parameters": {
"type": "object",
"properties": {
"from": {"type": "string"},
"to": {"type": "string"},
"date": {"type": "string"}
}
}
}
]
@sgl.function
def agent_workflow(s, user_query, tools):
# System prompt (cached with RadixAttention)
s += "You are a helpful assistant with access to tools.\n"
s += f"Available tools: {tools}\n\n"
# User query
s += f"User: {user_query}\n"
s += "Assistant: "
# Generate with function calling
s += sgl.gen(
"response",
max_tokens=200,
tools=tools, # SGLang handles tool call format
stop=["User:", "\n\n"]
)
# Multiple queries reuse system prompt
state1 = agent_workflow.run(
user_query="What's the weather in NYC?",
tools=tools
)
# First call: Computes full system prompt
state2 = agent_workflow.run(
user_query="Book a flight to LA",
tools=tools
)
# Second call: Reuses system prompt (5× faster)
```
## Performance benchmarks
### RadixAttention speedup
**Few-shot prompting** (10 examples in prompt):
- vLLM: 2.5 sec/request
- SGLang: **0.25 sec/request** (10× faster)
- Throughput: 4× higher
**Agent workflows** (1000-token system prompt):
- vLLM: 1.8 sec/request
- SGLang: **0.35 sec/request** (5× faster)
**JSON decoding**:
- Standard: 45 tok/s
- SGLang: **135 tok/s** (3× faster)
### Throughput (Llama 3-8B, A100)
| Workload | vLLM | SGLang | Speedup |
|----------|------|--------|---------|
| Simple generation | 2500 tok/s | 2800 tok/s | 1.12× |
| Few-shot (10 examples) | 500 tok/s | 5000 tok/s | 10× |
| Agent (tool calls) | 800 tok/s | 4000 tok/s | 5× |
| JSON output | 600 tok/s | 2400 tok/s | 4× |
## Multi-turn conversations
```python
@sgl.function
def multi_turn_chat(s, history, new_message):
# System prompt (always cached)
s += "You are a helpful AI assistant.\n\n"
# Conversation history (cached as it grows)
for msg in history:
s += f"{msg['role']}: {msg['content']}\n"
# New user message (only new part)
s += f"User: {new_message}\n"
s += "Assistant: "
s += sgl.gen("response", max_tokens=200)
# Turn 1
history = []
state = multi_turn_chat.run(history=history, new_message="Hi there!")
history.append({"role": "User", "content": "Hi there!"})
history.append({"role": "Assistant", "content": state["response"]})
# Turn 2 (reuses Turn 1 KV cache)
state = multi_turn_chat.run(history=history, new_message="What's 2+2?")
# Only computes new message (much faster!)
# Turn 3 (reuses Turn 1 + Turn 2 KV cache)
state = multi_turn_chat.run(history=history, new_message="Tell me a joke")
# Progressively faster as history grows
```
## Advanced features
### Speculative decoding
```bash
# Launch with draft model (2-3× faster)
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-70B-Instruct \
--speculative-model meta-llama/Meta-Llama-3-8B-Instruct \
--speculative-num-steps 5
```
### Multi-modal (vision models)
```python
@sgl.function
def describe_image(s, image_path):
s += sgl.image(image_path)
s += "Describe this image in detail: "
s += sgl.gen("description", max_tokens=200)
state = describe_image.run(image_path="photo.jpg")
print(state["description"])
```
### Batching and parallel requests
```python
# Automatic batching (continuous batching)
states = sgl.run_batch(
[
simple_gen.bind(question="What is AI?"),
simple_gen.bind(question="What is ML?"),
simple_gen.bind(question="What is DL?"),
]
)
# All 3 processed in single batch (efficient)
```
## OpenAI-compatible API
```bash
# Start server with OpenAI API
python -m sglang.launch_server \
--model-path meta-llama/Meta-Llama-3-8B-Instruct \
--port 30000
# Use with OpenAI client
curl http://localhost:30000/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "default",
"messages": [
{"role": "system", "content": "You are helpful"},
{"role": "user", "content": "Hello"}
],
"temperature": 0.7,
"max_tokens": 100
}'
# Works with OpenAI Python SDK
from openai import OpenAI
client = OpenAI(base_url="http://localhost:30000/v1", api_key="EMPTY")
response = client.chat.completions.create(
model="default",
messages=[{"role": "user", "content": "Hello"}]
)
```
## Supported models
**Text models**:
- Llama 2, Llama 3, Llama 3.1, Llama 3.2
- Mistral, Mixtral
- Qwen, Qwen2, QwQ
- DeepSeek-V2, DeepSeek-V3
- Gemma, Phi-3
**Vision models**:
- LLaVA, LLaVA-OneVision
- Phi-3-Vision
- Qwen2-VL
**100+ models** from HuggingFace
## Hardware support
**NVIDIA**: A100, H100, L4, T4 (CUDA 11.8+)
**AMD**: MI300, MI250 (ROCm 6.0+)
**Intel**: Xeon with GPU (coming soon)
**Apple**: M1/M2/M3 via MPS (experimental)
## References
- **[Structured Generation Guide](references/structured-generation.md)** - JSON schemas, regex, grammars, validation
- **[RadixAttention Deep Dive](references/radix-attention.md)** - How it works, optimization, benchmarks
- **[Production Deployment](references/deployment.md)** - Multi-GPU, monitoring, autoscaling
## Resources
- **GitHub**: https://github.com/sgl-project/sglang
- **Docs**: https://sgl-project.github.io/
- **Paper**: RadixAttention (arXiv:2312.07104)
- **Discord**: https://discord.gg/sglang
This skill provides high-performance structured generation and serving for LLMs and VLMs using RadixAttention prefix caching. It accelerates agentic workflows, constrained decoding (JSON/regex/grammar), and multi-turn conversations, delivering up to 5×–10× speedups versus standard systems. It is designed for production-scale inference with automatic prefix reuse and OpenAI-compatible APIs.
The runtime builds a radix tree of processed token prefixes and automatically detects shared prefixes across requests. When a new request reuses a prefix (system prompt, few-shot examples, conversation history), SGLang reuses the KV cache for that prefix and only computes new tokens, drastically reducing compute. It also supports constrained decoding via JSON schema, regex, or grammar, tool calling for agent workflows, speculative decoding, batching, and multi-modal inputs.
How much faster is this compared to vLLM?
Typical agentic workloads observe ~5× speedup; few-shot prompting can see ~10× improvements due to prefix reuse.
Can I enforce valid JSON outputs?
Yes — use JSON schema constraints to produce validated JSON, or use regex/grammar constraints for other structured formats.