home / skills / orchestra-research / ai-research-skills / moe-training

This skill helps you train large-scale Mixture of Experts models with DeepSpeed or HuggingFace efficiently, reducing compute while expanding capacity.

npx playbooks add skill orchestra-research/ai-research-skills --skill moe-training

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
14.6 KB
---
name: moe-training
description: Train Mixture of Experts (MoE) models using DeepSpeed or HuggingFace. Use when training large-scale models with limited compute (5× cost reduction vs dense models), implementing sparse architectures like Mixtral 8x7B or DeepSeek-V3, or scaling model capacity without proportional compute increase. Covers MoE architectures, routing mechanisms, load balancing, expert parallelism, and inference optimization.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Emerging Techniques, MoE, Mixture Of Experts, Sparse Models, DeepSpeed, Expert Parallelism, Mixtral, DeepSeek, Routing, Load Balancing, Efficient Training]
dependencies: [deepspeed, transformers, torch, accelerate]
---

# MoE Training: Mixture of Experts

## When to Use This Skill

Use MoE Training when you need to:
- **Train larger models** with limited compute (5× cost reduction vs dense models)
- **Scale model capacity** without proportional compute increase
- **Achieve better performance** per compute budget than dense models
- **Specialize experts** for different domains/tasks/languages
- **Reduce inference latency** with sparse activation (only 13B/47B params active in Mixtral)
- **Implement SOTA models** like Mixtral 8x7B, DeepSeek-V3, Switch Transformers

**Notable MoE Models**: Mixtral 8x7B (Mistral AI), DeepSeek-V3, Switch Transformers (Google), GLaM (Google), NLLB-MoE (Meta)

## Installation

```bash
# DeepSpeed with MoE support
pip install deepspeed>=0.6.0

# Megatron-DeepSpeed for large-scale training
git clone https://github.com/microsoft/Megatron-DeepSpeed
cd Megatron-DeepSpeed
pip install -r requirements.txt

# Alternative: HuggingFace Transformers
pip install transformers accelerate
```

## Quick Start

### Basic MoE Architecture

```python
import torch
import torch.nn as nn

class MoELayer(nn.Module):
    """Sparse Mixture of Experts layer."""

    def __init__(self, hidden_size, num_experts=8, top_k=2):
        super().__init__()
        self.num_experts = num_experts
        self.top_k = top_k

        # Expert networks (FFN)
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(hidden_size, 4 * hidden_size),
                nn.GELU(),
                nn.Linear(4 * hidden_size, hidden_size)
            )
            for _ in range(num_experts)
        ])

        # Gating network (router)
        self.gate = nn.Linear(hidden_size, num_experts)

    def forward(self, x):
        # x shape: (batch_size, seq_len, hidden_size)
        batch_size, seq_len, hidden_size = x.shape

        # Flatten for routing
        x_flat = x.view(-1, hidden_size)  # (batch_size * seq_len, hidden_size)

        # Compute gate scores
        gate_logits = self.gate(x_flat)  # (batch_size * seq_len, num_experts)

        # Top-k routing
        gate_scores = torch.softmax(gate_logits, dim=-1)
        topk_scores, topk_indices = torch.topk(gate_scores, self.top_k, dim=-1)

        # Normalize top-k scores
        topk_scores = topk_scores / topk_scores.sum(dim=-1, keepdim=True)

        # Dispatch and combine expert outputs
        output = torch.zeros_like(x_flat)

        for i in range(self.top_k):
            expert_idx = topk_indices[:, i]
            expert_scores = topk_scores[:, i].unsqueeze(-1)

            # Route tokens to experts
            for expert_id in range(self.num_experts):
                mask = (expert_idx == expert_id)
                if mask.any():
                    expert_input = x_flat[mask]
                    expert_output = self.experts[expert_id](expert_input)
                    output[mask] += expert_scores[mask] * expert_output

        # Reshape back
        return output.view(batch_size, seq_len, hidden_size)
```

### DeepSpeed MoE Training

```bash
# Training script with MoE
deepspeed pretrain_gpt_moe.py \
  --num-layers 24 \
  --hidden-size 1024 \
  --num-attention-heads 16 \
  --seq-length 2048 \
  --max-position-embeddings 2048 \
  --micro-batch-size 4 \
  --global-batch-size 256 \
  --train-iters 500000 \
  --lr 0.0001 \
  --min-lr 0.00001 \
  --lr-decay-style cosine \
  --num-experts 128 \
  --moe-expert-parallel-size 4 \
  --moe-loss-coeff 0.01 \
  --moe-train-capacity-factor 1.25 \
  --moe-eval-capacity-factor 2.0 \
  --fp16 \
  --deepspeed_config ds_config.json
```

## Core Concepts

### 1. MoE Architecture

**Key Components:**
- **Experts**: Multiple specialized FFN networks (typically 8-128)
- **Router/Gate**: Learned network that selects which experts to use
- **Top-k Routing**: Activate only k experts per token (k=1 or k=2)
- **Load Balancing**: Ensure even expert utilization

```
Input Token
    ↓
Router (Gate Network)
    ↓
Top-k Expert Selection (e.g., 2 out of 8)
    ↓
Expert 1 (weight: 0.6) + Expert 5 (weight: 0.4)
    ↓
Weighted Combination
    ↓
Output
```

### 2. Routing Mechanisms

**Top-1 Routing (Switch Transformer):**
```python
# Simplest routing: one expert per token
gate_logits = router(x)  # (batch, seq_len, num_experts)
expert_idx = torch.argmax(gate_logits, dim=-1)  # Hard routing
```

**Top-2 Routing (Mixtral):**
```python
# Top-2: two experts per token
gate_scores = torch.softmax(router(x), dim=-1)
top2_scores, top2_indices = torch.topk(gate_scores, k=2, dim=-1)

# Normalize scores
top2_scores = top2_scores / top2_scores.sum(dim=-1, keepdim=True)

# Combine expert outputs
output = (top2_scores[:, :, 0:1] * expert_outputs[top2_indices[:, :, 0]] +
          top2_scores[:, :, 1:2] * expert_outputs[top2_indices[:, :, 1]])
```

**Expert Choice Routing:**
```python
# Experts choose top-k tokens (instead of tokens choosing experts)
# Guarantees perfect load balancing
expert_scores = router(x).transpose(-1, -2)  # (batch, num_experts, seq_len)
topk_tokens = torch.topk(expert_scores, k=capacity_per_expert, dim=-1)
```

### 3. Load Balancing

**Auxiliary Loss:**
```python
def load_balancing_loss(gate_logits, expert_indices, num_experts):
    """Encourage uniform expert usage."""
    # Fraction of tokens routed to each expert
    expert_counts = torch.bincount(expert_indices.flatten(), minlength=num_experts)
    expert_fraction = expert_counts.float() / expert_indices.numel()

    # Gate probability for each expert (average across tokens)
    gate_probs = torch.softmax(gate_logits, dim=-1).mean(dim=0)

    # Auxiliary loss: encourage alignment
    aux_loss = num_experts * (expert_fraction * gate_probs).sum()

    return aux_loss

# Add to main loss
total_loss = language_model_loss + 0.01 * load_balancing_loss(...)
```

**Router Z-Loss (Stability):**
```python
def router_z_loss(logits):
    """Encourage router to have lower entropy (more decisive)."""
    z_loss = torch.logsumexp(logits, dim=-1).pow(2).mean()
    return z_loss

total_loss = lm_loss + 0.01 * aux_loss + 0.001 * router_z_loss(gate_logits)
```

### 4. Expert Parallelism

```python
# DeepSpeed configuration
{
  "train_batch_size": 256,
  "fp16": {"enabled": true},
  "moe": {
    "enabled": true,
    "num_experts": 128,
    "expert_parallel_size": 8,  # Distribute 128 experts across 8 GPUs
    "capacity_factor": 1.25,    # Expert capacity = tokens_per_batch * capacity_factor / num_experts
    "drop_tokens": true,        # Drop tokens exceeding capacity
    "use_residual": false
  }
}
```

## Training Configuration

### DeepSpeed MoE Config

```json
{
  "train_batch_size": 256,
  "gradient_accumulation_steps": 1,
  "optimizer": {
    "type": "Adam",
    "params": {
      "lr": 0.0001,
      "betas": [0.9, 0.999],
      "eps": 1e-8
    }
  },
  "fp16": {
    "enabled": true,
    "loss_scale": 0,
    "initial_scale_power": 16
  },
  "moe": {
    "enabled": true,
    "num_experts": 128,
    "expert_parallel_size": 8,
    "moe_loss_coeff": 0.01,
    "train_capacity_factor": 1.25,
    "eval_capacity_factor": 2.0,
    "min_capacity": 4,
    "drop_tokens": true,
    "use_residual": false,
    "use_tutel": false
  },
  "zero_optimization": {
    "stage": 1
  }
}
```

### Training Script

```bash
#!/bin/bash

# Mixtral-style MoE training
deepspeed --num_gpus 8 pretrain_moe.py \
  --model-parallel-size 1 \
  --num-layers 32 \
  --hidden-size 4096 \
  --num-attention-heads 32 \
  --seq-length 2048 \
  --max-position-embeddings 4096 \
  --micro-batch-size 2 \
  --global-batch-size 256 \
  --train-iters 500000 \
  --save-interval 5000 \
  --eval-interval 1000 \
  --eval-iters 100 \
  --lr 0.0001 \
  --min-lr 0.00001 \
  --lr-decay-style cosine \
  --lr-warmup-iters 2000 \
  --clip-grad 1.0 \
  --weight-decay 0.1 \
  --num-experts 8 \
  --moe-expert-parallel-size 4 \
  --moe-loss-coeff 0.01 \
  --moe-train-capacity-factor 1.25 \
  --moe-eval-capacity-factor 2.0 \
  --disable-moe-token-dropping \
  --fp16 \
  --deepspeed \
  --deepspeed_config ds_config_moe.json \
  --data-path /path/to/data \
  --vocab-file /path/to/vocab.json \
  --merge-file /path/to/merges.txt
```

## Advanced Patterns

### Mixtral 8x7B Architecture

```python
class MixtralMoEBlock(nn.Module):
    """Mixtral-style MoE block with 8 experts, top-2 routing."""

    def __init__(self, config):
        super().__init__()
        self.hidden_dim = config.hidden_size
        self.ffn_dim = config.intermediate_size
        self.num_experts = config.num_local_experts  # 8
        self.top_k = config.num_experts_per_tok       # 2

        # 8 expert FFNs
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(self.hidden_dim, self.ffn_dim, bias=False),
                nn.SiLU(),
                nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
            )
            for _ in range(self.num_experts)
        ])

        # Router
        self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)

    def forward(self, hidden_states):
        batch_size, sequence_length, hidden_dim = hidden_states.shape

        # Flatten
        hidden_states = hidden_states.view(-1, hidden_dim)

        # Router logits
        router_logits = self.gate(hidden_states)  # (batch * seq_len, num_experts)

        # Softmax and top-2
        routing_weights = torch.softmax(router_logits, dim=1)
        routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)

        # Normalize routing weights
        routing_weights /= routing_weights.sum(dim=-1, keepdim=True)

        # Initialize output
        final_hidden_states = torch.zeros_like(hidden_states)

        # Route to experts
        for expert_idx in range(self.num_experts):
            expert_layer = self.experts[expert_idx]
            idx, top_x = torch.where(selected_experts == expert_idx)

            if idx.shape[0] == 0:
                continue

            # Current expert tokens
            current_hidden_states = hidden_states[idx]

            # Expert forward
            current_hidden_states = expert_layer(current_hidden_states)

            # Weighted by routing scores
            current_hidden_states *= routing_weights[idx, top_x, None]

            # Accumulate
            final_hidden_states.index_add_(0, idx, current_hidden_states)

        # Reshape
        return final_hidden_states.view(batch_size, sequence_length, hidden_dim)
```

### PR-MoE (Pyramid-Residual-MoE)

```bash
# DeepSpeed PR-MoE: 3x better parameter efficiency
deepspeed pretrain_gpt_moe.py \
  --num-layers 24 \
  --hidden-size 1024 \
  --num-attention-heads 16 \
  --num-experts "[128, 64, 32, 16]" \
  --mlp-type residual \
  --moe-expert-parallel-size 4 \
  --moe-loss-coeff 0.01 \
  --fp16
```

## Best Practices

### 1. Expert Count Selection

```python
# Rule of thumb: More experts = more capacity, but diminishing returns
# Typical configurations:
# - Small models (1B-7B): 8-16 experts
# - Medium models (7B-30B): 8-64 experts
# - Large models (30B+): 64-256 experts

# Example: Mixtral 8x7B
# Total params: 47B (8 experts × 7B each)
# Active params: 13B (2 experts × 7B, top-2 routing)
# Efficiency: 47B capacity with 13B compute
```

### 2. Capacity Factor Tuning

```python
# Capacity = (tokens_per_batch / num_experts) * capacity_factor

# Training: Lower capacity (faster, drops some tokens)
train_capacity_factor = 1.25  # 25% buffer

# Evaluation: Higher capacity (no dropping)
eval_capacity_factor = 2.0    # 100% buffer

# Formula:
expert_capacity = int((seq_len * batch_size / num_experts) * capacity_factor)
```

### 3. Learning Rate Guidelines

```python
# MoE models need lower LR than dense models
# - Dense model: lr = 6e-4
# - MoE model: lr = 1e-4 (3-6× lower)

# Also extend decay schedule
dense_lr_decay_iters = 300000
moe_lr_decay_iters = 500000  # 1.5-2× longer
```

### 4. Loss Coefficient Tuning

```python
# Start with standard values
moe_loss_coeff = 0.01    # Auxiliary loss (load balancing)
router_z_loss_coeff = 0.001  # Router entropy (stability)

# If load imbalance persists, increase aux loss
if max_expert_usage / min_expert_usage > 2.0:
    moe_loss_coeff = 0.1  # Stronger load balancing

# If training unstable, increase z-loss
if grad_norm > 10.0:
    router_z_loss_coeff = 0.01
```

### 5. Avoid Common Pitfalls

```python
# ❌ Bad: Using same LR as dense model
optimizer = Adam(model.parameters(), lr=6e-4)

# ✅ Good: Lower LR for MoE
optimizer = Adam([
    {'params': model.non_moe_params, 'lr': 6e-4},
    {'params': model.moe_params, 'lr': 1e-4}
])

# ❌ Bad: No load balancing
loss = lm_loss

# ✅ Good: Add auxiliary loss
loss = lm_loss + 0.01 * aux_loss + 0.001 * z_loss

# ❌ Bad: Too many experts for small dataset
num_experts = 128  # Overfitting risk

# ✅ Good: Match experts to data diversity
num_experts = 8  # Better for small datasets
```

## Inference Optimization

### Sparse Inference

```python
# Only activate top-k experts (huge memory savings)
@torch.no_grad()
def moe_inference(x, model, top_k=2):
    """Sparse MoE inference: only load k experts."""
    # Router
    gate_logits = model.gate(x)
    topk_scores, topk_indices = torch.topk(
        torch.softmax(gate_logits, dim=-1),
        k=top_k,
        dim=-1
    )

    # Load and run only top-k experts
    output = torch.zeros_like(x)
    for i in range(top_k):
        expert_idx = topk_indices[:, i]
        # Load expert from disk/offload if needed
        expert = model.load_expert(expert_idx)
        output += topk_scores[:, i:i+1] * expert(x)

    return output
```

## Resources

- **DeepSpeed MoE Tutorial**: https://www.deepspeed.ai/tutorials/mixture-of-experts-nlg/
- **Mixtral Paper**: https://arxiv.org/abs/2401.04088
- **Switch Transformers**: https://arxiv.org/abs/2101.03961
- **HuggingFace MoE Guide**: https://huggingface.co/blog/moe
- **NVIDIA MoE Blog**: https://developer.nvidia.com/blog/applying-mixture-of-experts-in-llm-architectures/

## See Also

- `references/architectures.md` - MoE model architectures (Mixtral, Switch, DeepSeek-V3)
- `references/training.md` - Advanced training techniques and optimization
- `references/inference.md` - Production deployment and serving patterns


Overview

This skill trains Mixture of Experts (MoE) models using DeepSpeed or HuggingFace tooling to scale model capacity while reducing compute cost. It targets sparse architectures like Mixtral 8x7B and DeepSeek-V3, enabling large parameter capacity with only a fraction of active compute. The package includes example architectures, DeepSpeed configs, routing and load-balancing losses, and inference optimizations for sparse expert activation.

How this skill works

The skill provides building blocks: expert FFNs, router/gating networks, top-k routing (e.g., top-1 or top-2), and auxiliary losses for load balancing and router stability. It supplies DeepSpeed and HuggingFace integration patterns, expert-parallel config snippets, and training scripts that handle capacity factors, token dropping, and expert sharding. For inference it includes sparse loading strategies to activate only the top-k experts per token and reduce memory and latency.

When to use it

  • When you need to scale model capacity beyond dense compute limits (e.g., 47B capacity with 13B active compute).
  • When training large models on limited hardware to reduce cost (typical 3–5× cost reduction vs dense).
  • When specializing sub-networks (experts) for domains, languages, or tasks.
  • When building or replicating state-of-the-art MoE models like Mixtral, Switch Transformer, or DeepSeek-V3.
  • When you need lower inference latency and memory by sparsely activating experts.

Best practices

  • Choose expert counts to match model size and data diversity (e.g., 8–16 for 1–7B, 8–64 for 7–30B, 64+ for 30B+).
  • Use lower learning rates and longer decay schedules than dense models (start ~1e-4 for MoE).
  • Tune capacity factors: smaller for training (1.25) to speed up, larger for evaluation (2.0) to avoid drops.
  • Add auxiliary load-balancing loss and a router z-loss to stabilize routing and prevent expert collapse.
  • Shard experts with expert_parallel_size in DeepSpeed and enable FP16/Zero optimizations for memory efficiency.

Example use cases

  • Training Mixtral-style top-2 MoE with 8 local experts per layer to get large capacity at lower compute.
  • Implementing PR-MoE (pyramid-residual) to improve parameter efficiency across layers.
  • Using expert-choice routing for perfect load balancing in high-throughput production training.
  • Offloading and sparse-loading experts at inference to serve large-capacity models with limited memory.
  • Adapting capacity and expert counts to prevent overfitting on smaller datasets.

FAQ

How many experts should I start with?

Start small and scale: 8 experts for 1–7B ranges, 16–64 for mid sizes. Increase only with sufficient data diversity to avoid overfitting.

What learning rate and loss terms work best?

Use a lower LR (~1e-4) than dense models and include a load-balancing aux loss (~0.01) plus a router z-loss (~0.001) to stabilize routing.