home / skills / orchestra-research / ai-research-skills / model-merging

This skill merges multiple fine-tuned models with mergekit to create specialized, higher-performing models without retraining.

npx playbooks add skill orchestra-research/ai-research-skills --skill model-merging

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
12.1 KB
---
name: model-merging
description: Merge multiple fine-tuned models using mergekit to combine capabilities without retraining. Use when creating specialized models by blending domain-specific expertise (math + coding + chat), improving performance beyond single models, or experimenting rapidly with model variants. Covers SLERP, TIES-Merging, DARE, Task Arithmetic, linear merging, and production deployment strategies.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Emerging Techniques, Model Merging, Mergekit, SLERP, TIES, DARE, Task Arithmetic, Model Fusion, No Retraining, Multi-Capability, Arcee AI]
dependencies: [mergekit, transformers, torch]
---

# Model Merging: Combining Pre-trained Models

## When to Use This Skill

Use Model Merging when you need to:
- **Combine capabilities** from multiple fine-tuned models without retraining
- **Create specialized models** by blending domain-specific expertise (math + coding + chat)
- **Improve performance** beyond single models (often +5-10% on benchmarks)
- **Reduce training costs** - no GPUs needed, merges run on CPU
- **Experiment rapidly** - create new model variants in minutes, not days
- **Preserve multiple skills** - merge without catastrophic forgetting

**Success Stories**: Marcoro14-7B-slerp (best on Open LLM Leaderboard 02/2024), many top HuggingFace models use merging

**Tools**: mergekit (Arcee AI), LazyMergekit, Model Soup

## Installation

```bash
# Install mergekit
git clone https://github.com/arcee-ai/mergekit.git
cd mergekit
pip install -e .

# Or via pip
pip install mergekit

# Optional: Transformer library
pip install transformers torch
```

## Quick Start

### Simple Linear Merge

```yaml
# config.yml - Merge two models with equal weights
merge_method: linear
models:
  - model: mistralai/Mistral-7B-v0.1
    parameters:
      weight: 0.5
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.5
dtype: bfloat16
```

```bash
# Run merge
mergekit-yaml config.yml ./merged-model --cuda

# Use merged model
python -m transformers.models.auto --model_name_or_path ./merged-model
```

### SLERP Merge (Best for 2 Models)

```yaml
# config.yml - Spherical interpolation
merge_method: slerp
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
parameters:
  t: 0.5  # Interpolation factor (0=model1, 1=model2)
dtype: bfloat16
```

## Core Concepts

### 1. Merge Methods

**Linear (Model Soup)**
- Simple weighted average of parameters
- Fast, works well for similar models
- Can merge 2+ models

```python
merged_weights = w1 * model1_weights + w2 * model2_weights + w3 * model3_weights
# where w1 + w2 + w3 = 1
```

**SLERP (Spherical Linear Interpolation)**
- Interpolates along sphere in weight space
- Preserves magnitude of weight vectors
- Best for merging 2 models
- Smoother than linear

```python
# SLERP formula
merged = (sin((1-t)*θ) / sin(θ)) * model1 + (sin(t*θ) / sin(θ)) * model2
# where θ = arccos(dot(model1, model2))
# t ∈ [0, 1]
```

**Task Arithmetic**
- Extract "task vectors" (fine-tuned - base)
- Combine task vectors, add to base
- Good for merging multiple specialized models

```python
# Task vector
task_vector = finetuned_model - base_model

# Merge multiple task vectors
merged = base_model + α₁*task_vector₁ + α₂*task_vector₂
```

**TIES-Merging**
- Task arithmetic + sparsification
- Resolves sign conflicts in parameters
- Best for merging many task-specific models

**DARE (Drop And REscale)**
- Randomly drops fine-tuned parameters
- Rescales remaining parameters
- Reduces redundancy, maintains performance

### 2. Configuration Structure

```yaml
# Basic structure
merge_method: <method>  # linear, slerp, ties, dare_ties, task_arithmetic
base_model: <path>      # Optional: base model for task arithmetic

models:
  - model: <path/to/model1>
    parameters:
      weight: <float>   # Merge weight
      density: <float>  # For TIES/DARE

  - model: <path/to/model2>
    parameters:
      weight: <float>

parameters:
  # Method-specific parameters

dtype: <dtype>  # bfloat16, float16, float32

# Optional
slices:  # Layer-wise merging
tokenizer:  # Tokenizer configuration
```

## Merge Methods Guide

### Linear Merge

**Best for**: Simple model combinations, equal weighting

```yaml
merge_method: linear
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      weight: 0.4
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      weight: 0.3
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      weight: 0.3
dtype: bfloat16
```

### SLERP Merge

**Best for**: Two models, smooth interpolation

```yaml
merge_method: slerp
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 32]
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [0, 32]
parameters:
  t: 0.5  # 0.0 = first model, 1.0 = second model
dtype: bfloat16
```

**Layer-specific SLERP:**

```yaml
merge_method: slerp
slices:
  - sources:
      - model: model_a
        layer_range: [0, 32]
      - model: model_b
        layer_range: [0, 32]
parameters:
  t:
    - filter: self_attn    # Attention layers
      value: 0.3
    - filter: mlp          # MLP layers
      value: 0.7
    - value: 0.5           # Default for other layers
dtype: bfloat16
```

### Task Arithmetic

**Best for**: Combining specialized skills

```yaml
merge_method: task_arithmetic
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1  # Math
    parameters:
      weight: 0.5
  - model: teknium/OpenHermes-2.5-Mistral-7B  # Chat
    parameters:
      weight: 0.3
  - model: ajibawa-2023/Code-Mistral-7B  # Code
    parameters:
      weight: 0.2
dtype: bfloat16
```

### TIES-Merging

**Best for**: Many models, resolving conflicts

```yaml
merge_method: ties
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      density: 0.5  # Keep top 50% of parameters
      weight: 1.0
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      density: 0.5
      weight: 1.0
  - model: NousResearch/Nous-Hermes-2-Mistral-7B-DPO
    parameters:
      density: 0.5
      weight: 1.0
parameters:
  normalize: true
dtype: bfloat16
```

### DARE Merge

**Best for**: Reducing redundancy

```yaml
merge_method: dare_ties
base_model: mistralai/Mistral-7B-v0.1
models:
  - model: WizardLM/WizardMath-7B-V1.1
    parameters:
      density: 0.5    # Drop 50% of deltas
      weight: 0.6
  - model: teknium/OpenHermes-2.5-Mistral-7B
    parameters:
      density: 0.5
      weight: 0.4
parameters:
  int8_mask: true  # Use int8 for masks (saves memory)
dtype: bfloat16
```

## Advanced Patterns

### Layer-wise Merging

```yaml
# Different models for different layers
merge_method: passthrough
slices:
  - sources:
      - model: mistralai/Mistral-7B-v0.1
        layer_range: [0, 16]   # First half
  - sources:
      - model: teknium/OpenHermes-2.5-Mistral-7B
        layer_range: [16, 32]  # Second half
dtype: bfloat16
```

### MoE from Merged Models

```yaml
# Create Mixture of Experts
merge_method: moe
base_model: mistralai/Mistral-7B-v0.1
experts:
  - source_model: WizardLM/WizardMath-7B-V1.1
    positive_prompts:
      - "math"
      - "calculate"
  - source_model: teknium/OpenHermes-2.5-Mistral-7B
    positive_prompts:
      - "chat"
      - "conversation"
  - source_model: ajibawa-2023/Code-Mistral-7B
    positive_prompts:
      - "code"
      - "python"
dtype: bfloat16
```

### Tokenizer Merging

```yaml
merge_method: linear
models:
  - model: mistralai/Mistral-7B-v0.1
  - model: custom/specialized-model

tokenizer:
  source: "union"  # Combine vocabularies from both models
  tokens:
    <|special_token|>:
      source: "custom/specialized-model"
```

## Best Practices

### 1. Model Compatibility

```python
# ✅ Good: Same architecture
models = [
    "mistralai/Mistral-7B-v0.1",
    "teknium/OpenHermes-2.5-Mistral-7B",  # Both Mistral 7B
]

# ❌ Bad: Different architectures
models = [
    "meta-llama/Llama-2-7b-hf",  # Llama
    "mistralai/Mistral-7B-v0.1",  # Mistral (incompatible!)
]
```

### 2. Weight Selection

```yaml
# ✅ Good: Weights sum to 1.0
models:
  - model: model_a
    parameters:
      weight: 0.6
  - model: model_b
    parameters:
      weight: 0.4  # 0.6 + 0.4 = 1.0

# ⚠️  Acceptable: Weights don't sum to 1 (for task arithmetic)
models:
  - model: model_a
    parameters:
      weight: 0.8
  - model: model_b
    parameters:
      weight: 0.8  # May boost performance
```

### 3. Method Selection

```python
# Choose merge method based on use case:

# 2 models, smooth blend → SLERP
merge_method = "slerp"

# 3+ models, simple average → Linear
merge_method = "linear"

# Multiple task-specific models → Task Arithmetic or TIES
merge_method = "ties"

# Want to reduce redundancy → DARE
merge_method = "dare_ties"
```

### 4. Density Tuning (TIES/DARE)

```yaml
# Start conservative (keep more parameters)
parameters:
  density: 0.8  # Keep 80%

# If performance good, increase sparsity
parameters:
  density: 0.5  # Keep 50%

# If performance degrades, reduce sparsity
parameters:
  density: 0.9  # Keep 90%
```

### 5. Layer-specific Merging

```yaml
# Preserve base model's beginning and end
merge_method: passthrough
slices:
  - sources:
      - model: base_model
        layer_range: [0, 2]     # Keep first layers
  - sources:
      - model: merged_middle    # Merge middle layers
        layer_range: [2, 30]
  - sources:
      - model: base_model
        layer_range: [30, 32]   # Keep last layers
```

## Evaluation & Testing

### Benchmark Merged Models

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")

# Test on various tasks
test_prompts = {
    "math": "Calculate: 25 * 17 =",
    "code": "Write a Python function to reverse a string:",
    "chat": "What is the capital of France?",
}

for task, prompt in test_prompts.items():
    inputs = tokenizer(prompt, return_tensors="pt")
    outputs = model.generate(**inputs, max_length=100)
    print(f"{task}: {tokenizer.decode(outputs[0])}")
```

### Common Benchmarks

- **Open LLM Leaderboard**: General capabilities
- **MT-Bench**: Multi-turn conversation
- **MMLU**: Multitask accuracy
- **HumanEval**: Code generation
- **GSM8K**: Math reasoning

## Production Deployment

### Save and Upload

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

# Load merged model
model = AutoModelForCausalLM.from_pretrained("./merged-model")
tokenizer = AutoTokenizer.from_pretrained("./merged-model")

# Upload to HuggingFace Hub
model.push_to_hub("username/my-merged-model")
tokenizer.push_to_hub("username/my-merged-model")
```

### Quantize Merged Model

```bash
# Quantize with GGUF
python convert.py ./merged-model --outtype f16 --outfile merged-model.gguf

# Quantize with GPTQ
python quantize_gptq.py ./merged-model --bits 4 --group_size 128
```

## Common Pitfalls

### ❌ Pitfall 1: Merging Incompatible Models

```yaml
# Wrong: Different architectures
models:
  - model: meta-llama/Llama-2-7b  # Llama architecture
  - model: mistralai/Mistral-7B   # Mistral architecture
```

**Fix**: Only merge models with same architecture

### ❌ Pitfall 2: Over-weighting One Model

```yaml
# Suboptimal: One model dominates
models:
  - model: model_a
    parameters:
      weight: 0.95  # Too high
  - model: model_b
    parameters:
      weight: 0.05  # Too low
```

**Fix**: Use more balanced weights (0.3-0.7 range)

### ❌ Pitfall 3: Not Evaluating

```bash
# Wrong: Merge and deploy without testing
mergekit-yaml config.yml ./merged-model
# Deploy immediately (risky!)
```

**Fix**: Always benchmark before deploying

## Resources

- **mergekit GitHub**: https://github.com/arcee-ai/mergekit
- **HuggingFace Tutorial**: https://huggingface.co/blog/mlabonne/merge-models
- **LazyMergekit**: Automated merging notebook
- **TIES Paper**: https://arxiv.org/abs/2306.01708
- **DARE Paper**: https://arxiv.org/abs/2311.03099

## See Also

- `references/methods.md` - Deep dive into merge algorithms
- `references/examples.md` - Real-world merge configurations
- `references/evaluation.md` - Benchmarking and testing strategies


Overview

This skill explains how to merge multiple fine-tuned models using mergekit and related techniques to combine capabilities without retraining. It shows practical merge methods (linear, SLERP, Task Arithmetic, TIES, DARE), layer-wise patterns, and deployment guidance. The goal is fast experimentation, cost savings, and producing specialized models that preserve multiple skills.

How this skill works

Merges operate directly on model weights or fine-tuned deltas: linear averaging, spherical interpolation (SLERP), task-vector arithmetic, sparsified merges (TIES), and drop-and-rescale (DARE). You configure sources, weights, layer slices, and method-specific parameters, then run mergekit to produce a merged checkpoint. Resulting models are evaluated like any model and can be quantized or uploaded for production.

When to use it

  • Combine domain-specific experts (e.g., math + coding + chat) without retraining.
  • Create rapid model variants for A/B testing or research in minutes.
  • Improve benchmark performance beyond any single fine-tuned model.
  • Preserve multiple skills while avoiding catastrophic forgetting.
  • Reduce compute and cost—merges typically run on CPU, no GPU training needed.

Best practices

  • Only merge models with the same architecture and compatible parameter shapes.
  • Start with balanced weights (e.g., 0.3–0.7 range) and iterate using benchmarks.
  • Use SLERP for smooth 2-model blends, linear for 3+ models, TIES/DARE for many task-specific models.
  • Evaluate merged models across representative tasks (math, code, chat) before deploying.
  • Tune density parameters conservatively for TIES/DARE and increase sparsity only if performance holds.

Example use cases

  • Blend a math expert, a code expert, and a conversational model into one multi-skill model via task arithmetic.
  • Interpolate two competing fine-tunes with SLERP to find a smooth tradeoff between behavior styles.
  • Create a sparse ensemble with TIES to merge many small task-specific fine-tunes while resolving sign conflicts.
  • Apply DARE to reduce redundancy and maintain performance while lowering model size for deployment.
  • Assemble layer-wise merges to keep base model early/late layers and merge or replace middle layers for specialized capability.

FAQ

Can I merge models with different architectures?

No. Only merge models sharing the same architecture and compatible parameter shapes; mixing architectures will fail or produce invalid models.

How do I choose weights for merging?

Start balanced and benchmark. For task arithmetic weights need not sum to one. Use small grid searches or validation tasks to find optimal mixes.