home / skills / orchestra-research / ai-research-skills / modal
This skill guides you to run ML workloads on Modal's serverless GPU platform with automatic scaling and on-demand pricing.
npx playbooks add skill orchestra-research/ai-research-skills --skill modalReview the files below or copy the command above to add this skill to your agents.
---
name: modal-serverless-gpu
description: Serverless GPU cloud platform for running ML workloads. Use when you need on-demand GPU access without infrastructure management, deploying ML models as APIs, or running batch jobs with automatic scaling.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Infrastructure, Serverless, GPU, Cloud, Deployment, Modal]
dependencies: [modal>=0.64.0]
---
# Modal Serverless GPU
Comprehensive guide to running ML workloads on Modal's serverless GPU cloud platform.
## When to use Modal
**Use Modal when:**
- Running GPU-intensive ML workloads without managing infrastructure
- Deploying ML models as auto-scaling APIs
- Running batch processing jobs (training, inference, data processing)
- Need pay-per-second GPU pricing without idle costs
- Prototyping ML applications quickly
- Running scheduled jobs (cron-like workloads)
**Key features:**
- **Serverless GPUs**: T4, L4, A10G, L40S, A100, H100, H200, B200 on-demand
- **Python-native**: Define infrastructure in Python code, no YAML
- **Auto-scaling**: Scale to zero, scale to 100+ GPUs instantly
- **Sub-second cold starts**: Rust-based infrastructure for fast container launches
- **Container caching**: Image layers cached for rapid iteration
- **Web endpoints**: Deploy functions as REST APIs with zero-downtime updates
**Use alternatives instead:**
- **RunPod**: For longer-running pods with persistent state
- **Lambda Labs**: For reserved GPU instances
- **SkyPilot**: For multi-cloud orchestration and cost optimization
- **Kubernetes**: For complex multi-service architectures
## Quick start
### Installation
```bash
pip install modal
modal setup # Opens browser for authentication
```
### Hello World with GPU
```python
import modal
app = modal.App("hello-gpu")
@app.function(gpu="T4")
def gpu_info():
import subprocess
return subprocess.run(["nvidia-smi"], capture_output=True, text=True).stdout
@app.local_entrypoint()
def main():
print(gpu_info.remote())
```
Run: `modal run hello_gpu.py`
### Basic inference endpoint
```python
import modal
app = modal.App("text-generation")
image = modal.Image.debian_slim().pip_install("transformers", "torch", "accelerate")
@app.cls(gpu="A10G", image=image)
class TextGenerator:
@modal.enter()
def load_model(self):
from transformers import pipeline
self.pipe = pipeline("text-generation", model="gpt2", device=0)
@modal.method()
def generate(self, prompt: str) -> str:
return self.pipe(prompt, max_length=100)[0]["generated_text"]
@app.local_entrypoint()
def main():
print(TextGenerator().generate.remote("Hello, world"))
```
## Core concepts
### Key components
| Component | Purpose |
|-----------|---------|
| `App` | Container for functions and resources |
| `Function` | Serverless function with compute specs |
| `Cls` | Class-based functions with lifecycle hooks |
| `Image` | Container image definition |
| `Volume` | Persistent storage for models/data |
| `Secret` | Secure credential storage |
### Execution modes
| Command | Description |
|---------|-------------|
| `modal run script.py` | Execute and exit |
| `modal serve script.py` | Development with live reload |
| `modal deploy script.py` | Persistent cloud deployment |
## GPU configuration
### Available GPUs
| GPU | VRAM | Best For |
|-----|------|----------|
| `T4` | 16GB | Budget inference, small models |
| `L4` | 24GB | Inference, Ada Lovelace arch |
| `A10G` | 24GB | Training/inference, 3.3x faster than T4 |
| `L40S` | 48GB | Recommended for inference (best cost/perf) |
| `A100-40GB` | 40GB | Large model training |
| `A100-80GB` | 80GB | Very large models |
| `H100` | 80GB | Fastest, FP8 + Transformer Engine |
| `H200` | 141GB | Auto-upgrade from H100, 4.8TB/s bandwidth |
| `B200` | Latest | Blackwell architecture |
### GPU specification patterns
```python
# Single GPU
@app.function(gpu="A100")
# Specific memory variant
@app.function(gpu="A100-80GB")
# Multiple GPUs (up to 8)
@app.function(gpu="H100:4")
# GPU with fallbacks
@app.function(gpu=["H100", "A100", "L40S"])
# Any available GPU
@app.function(gpu="any")
```
## Container images
```python
# Basic image with pip
image = modal.Image.debian_slim(python_version="3.11").pip_install(
"torch==2.1.0", "transformers==4.36.0", "accelerate"
)
# From CUDA base
image = modal.Image.from_registry(
"nvidia/cuda:12.1.0-cudnn8-devel-ubuntu22.04",
add_python="3.11"
).pip_install("torch", "transformers")
# With system packages
image = modal.Image.debian_slim().apt_install("git", "ffmpeg").pip_install("whisper")
```
## Persistent storage
```python
volume = modal.Volume.from_name("model-cache", create_if_missing=True)
@app.function(gpu="A10G", volumes={"/models": volume})
def load_model():
import os
model_path = "/models/llama-7b"
if not os.path.exists(model_path):
model = download_model()
model.save_pretrained(model_path)
volume.commit() # Persist changes
return load_from_path(model_path)
```
## Web endpoints
### FastAPI endpoint decorator
```python
@app.function()
@modal.fastapi_endpoint(method="POST")
def predict(text: str) -> dict:
return {"result": model.predict(text)}
```
### Full ASGI app
```python
from fastapi import FastAPI
web_app = FastAPI()
@web_app.post("/predict")
async def predict(text: str):
return {"result": await model.predict.remote.aio(text)}
@app.function()
@modal.asgi_app()
def fastapi_app():
return web_app
```
### Web endpoint types
| Decorator | Use Case |
|-----------|----------|
| `@modal.fastapi_endpoint()` | Simple function → API |
| `@modal.asgi_app()` | Full FastAPI/Starlette apps |
| `@modal.wsgi_app()` | Django/Flask apps |
| `@modal.web_server(port)` | Arbitrary HTTP servers |
## Dynamic batching
```python
@app.function()
@modal.batched(max_batch_size=32, wait_ms=100)
async def batch_predict(inputs: list[str]) -> list[dict]:
# Inputs automatically batched
return model.batch_predict(inputs)
```
## Secrets management
```bash
# Create secret
modal secret create huggingface HF_TOKEN=hf_xxx
```
```python
@app.function(secrets=[modal.Secret.from_name("huggingface")])
def download_model():
import os
token = os.environ["HF_TOKEN"]
```
## Scheduling
```python
@app.function(schedule=modal.Cron("0 0 * * *")) # Daily midnight
def daily_job():
pass
@app.function(schedule=modal.Period(hours=1))
def hourly_job():
pass
```
## Performance optimization
### Cold start mitigation
```python
@app.function(
container_idle_timeout=300, # Keep warm 5 min
allow_concurrent_inputs=10, # Handle concurrent requests
)
def inference():
pass
```
### Model loading best practices
```python
@app.cls(gpu="A100")
class Model:
@modal.enter() # Run once at container start
def load(self):
self.model = load_model() # Load during warm-up
@modal.method()
def predict(self, x):
return self.model(x)
```
## Parallel processing
```python
@app.function()
def process_item(item):
return expensive_computation(item)
@app.function()
def run_parallel():
items = list(range(1000))
# Fan out to parallel containers
results = list(process_item.map(items))
return results
```
## Common configuration
```python
@app.function(
gpu="A100",
memory=32768, # 32GB RAM
cpu=4, # 4 CPU cores
timeout=3600, # 1 hour max
container_idle_timeout=120,# Keep warm 2 min
retries=3, # Retry on failure
concurrency_limit=10, # Max concurrent containers
)
def my_function():
pass
```
## Debugging
```python
# Test locally
if __name__ == "__main__":
result = my_function.local()
# View logs
# modal app logs my-app
```
## Common issues
| Issue | Solution |
|-------|----------|
| Cold start latency | Increase `container_idle_timeout`, use `@modal.enter()` |
| GPU OOM | Use larger GPU (`A100-80GB`), enable gradient checkpointing |
| Image build fails | Pin dependency versions, check CUDA compatibility |
| Timeout errors | Increase `timeout`, add checkpointing |
## References
- **[Advanced Usage](references/advanced-usage.md)** - Multi-GPU, distributed training, cost optimization
- **[Troubleshooting](references/troubleshooting.md)** - Common issues and solutions
## Resources
- **Documentation**: https://modal.com/docs
- **Examples**: https://github.com/modal-labs/modal-examples
- **Pricing**: https://modal.com/pricing
- **Discord**: https://discord.gg/modal
This skill provides a practical guide to using Modal's serverless GPU cloud platform for running ML workloads. It explains how to run on-demand GPUs, deploy models as APIs, and run batch or scheduled jobs without managing infrastructure. The content focuses on concrete examples, configuration patterns, and performance tips for production and experimentation.
The skill shows how to define serverless compute in Python, select GPU types (T4, A10G, A100, H100, etc.), build container images, and attach volumes and secrets. It covers lifecycle primitives (App, Function, Cls), deployment modes (run, serve, deploy), web endpoints (FastAPI/ASGI), batching, and scheduling. Examples show loading models at container start, exposing REST APIs, and using automatic scaling and cold-start controls.
How do I reduce cold-start latency?
Keep containers warm with container_idle_timeout, load models in @modal.enter(), and allow concurrent inputs to serve more requests per container.
Which GPU should I choose for inference vs training?
Use T4 or L4 for budget inference and small models; L40S/A10G for cost-effective inference; A100/H100 for large-model training and heavy throughput.