home / skills / orchestra-research / ai-research-skills / mamba
This skill helps you deploy and experiment with Mamba selective state-space models for efficient linear-time sequence processing on GPUs.
npx playbooks add skill orchestra-research/ai-research-skills --skill mambaReview the files below or copy the command above to add this skill to your agents.
---
name: mamba-architecture
description: State-space model with O(n) complexity vs Transformers' O(n²). 5× faster inference, million-token sequences, no KV cache. Selective SSM with hardware-aware design. Mamba-1 (d_state=16) and Mamba-2 (d_state=128, multi-head). Models 130M-2.8B on HuggingFace.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Model Architecture, Mamba, State Space Models, SSM, Linear Complexity, Long Context, Efficient Inference, Hardware-Aware, Alternative To Transformers]
dependencies: [mamba-ssm, torch, transformers, causal-conv1d]
---
# Mamba - Selective State Space Models
## Quick start
Mamba is a state-space model architecture achieving O(n) linear complexity for sequence modeling.
**Installation**:
```bash
# Install causal-conv1d (optional, for efficiency)
pip install causal-conv1d>=1.4.0
# Install Mamba
pip install mamba-ssm
# Or both together
pip install mamba-ssm[causal-conv1d]
```
**Prerequisites**: Linux, NVIDIA GPU, PyTorch 1.12+, CUDA 11.6+
**Basic usage** (Mamba block):
```python
import torch
from mamba_ssm import Mamba
batch, length, dim = 2, 64, 16
x = torch.randn(batch, length, dim).to("cuda")
model = Mamba(
d_model=dim, # Model dimension
d_state=16, # SSM state dimension
d_conv=4, # Conv1d kernel size
expand=2 # Expansion factor
).to("cuda")
y = model(x) # O(n) complexity!
assert y.shape == x.shape
```
## Common workflows
### Workflow 1: Language model with Mamba-2
**Complete LM with generation**:
```python
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
from mamba_ssm.models.config_mamba import MambaConfig
import torch
# Configure Mamba-2 LM
config = MambaConfig(
d_model=1024, # Hidden dimension
n_layer=24, # Number of layers
vocab_size=50277, # Vocabulary size
ssm_cfg=dict(
layer="Mamba2", # Use Mamba-2
d_state=128, # Larger state for Mamba-2
headdim=64, # Head dimension
ngroups=1 # Number of groups
)
)
model = MambaLMHeadModel(config, device="cuda", dtype=torch.float16)
# Generate text
input_ids = torch.randint(0, 1000, (1, 20), device="cuda", dtype=torch.long)
output = model.generate(
input_ids=input_ids,
max_length=100,
temperature=0.7,
top_p=0.9
)
```
### Workflow 2: Use pretrained Mamba models
**Load from HuggingFace**:
```python
from transformers import AutoTokenizer
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
# Load pretrained model
model_name = "state-spaces/mamba-2.8b"
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b") # Use compatible tokenizer
model = MambaLMHeadModel.from_pretrained(model_name, device="cuda", dtype=torch.float16)
# Generate
prompt = "The future of AI is"
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")
output_ids = model.generate(
input_ids=input_ids,
max_length=200,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.2
)
generated_text = tokenizer.decode(output_ids[0])
print(generated_text)
```
**Available models**:
- `state-spaces/mamba-130m`
- `state-spaces/mamba-370m`
- `state-spaces/mamba-790m`
- `state-spaces/mamba-1.4b`
- `state-spaces/mamba-2.8b`
### Workflow 3: Mamba-1 vs Mamba-2
**Mamba-1** (smaller state):
```python
from mamba_ssm import Mamba
model = Mamba(
d_model=256,
d_state=16, # Smaller state dimension
d_conv=4,
expand=2
).to("cuda")
```
**Mamba-2** (multi-head, larger state):
```python
from mamba_ssm import Mamba2
model = Mamba2(
d_model=256,
d_state=128, # Larger state dimension
d_conv=4,
expand=2,
headdim=64, # Head dimension for multi-head
ngroups=1 # Parallel groups
).to("cuda")
```
**Key differences**:
- **State size**: Mamba-1 (d_state=16) vs Mamba-2 (d_state=128)
- **Architecture**: Mamba-2 has multi-head structure
- **Normalization**: Mamba-2 uses RMSNorm
- **Distributed**: Mamba-2 supports tensor parallelism
### Workflow 4: Benchmark vs Transformers
**Generation speed comparison**:
```bash
# Benchmark Mamba
python benchmarks/benchmark_generation_mamba_simple.py \
--model-name "state-spaces/mamba-2.8b" \
--prompt "The future of machine learning is" \
--topp 0.9 --temperature 0.7 --repetition-penalty 1.2
# Benchmark Transformer
python benchmarks/benchmark_generation_mamba_simple.py \
--model-name "EleutherAI/pythia-2.8b" \
--prompt "The future of machine learning is" \
--topp 0.9 --temperature 0.7 --repetition-penalty 1.2
```
**Expected results**:
- **Mamba**: 5× faster inference
- **Memory**: No KV cache needed
- **Scaling**: Linear with sequence length
## When to use vs alternatives
**Use Mamba when**:
- Need long sequences (100K+ tokens)
- Want faster inference than Transformers
- Memory-constrained (no KV cache)
- Building streaming applications
- Linear scaling important
**Advantages**:
- **O(n) complexity**: Linear vs quadratic
- **5× faster inference**: No attention overhead
- **No KV cache**: Lower memory usage
- **Million-token sequences**: Hardware-efficient
- **Streaming**: Constant memory per token
**Use alternatives instead**:
- **Transformers**: Need best-in-class performance, have compute
- **RWKV**: Want RNN+Transformer hybrid
- **RetNet**: Need retention-based architecture
- **Hyena**: Want convolution-based approach
## Common issues
**Issue: CUDA out of memory**
Reduce batch size or use gradient checkpointing:
```python
model = MambaLMHeadModel(config, device="cuda", dtype=torch.float16)
model.gradient_checkpointing_enable() # Enable checkpointing
```
**Issue: Slow installation**
Install binary wheels (not source):
```bash
pip install mamba-ssm --no-build-isolation
```
**Issue: Missing causal-conv1d**
Install separately:
```bash
pip install causal-conv1d>=1.4.0
```
**Issue: Model not loading from HuggingFace**
Use `MambaLMHeadModel.from_pretrained` (not `AutoModel`):
```python
from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
model = MambaLMHeadModel.from_pretrained("state-spaces/mamba-2.8b")
```
## Advanced topics
**Selective SSM**: See [references/selective-ssm.md](references/selective-ssm.md) for mathematical formulation, state-space equations, and how selectivity enables O(n) complexity.
**Mamba-2 architecture**: See [references/mamba2-details.md](references/mamba2-details.md) for multi-head structure, tensor parallelism, and distributed training setup.
**Performance optimization**: See [references/performance.md](references/performance.md) for hardware-aware design, CUDA kernels, and memory efficiency techniques.
## Hardware requirements
- **GPU**: NVIDIA with CUDA 11.6+
- **VRAM**:
- 130M model: 2GB
- 370M model: 4GB
- 790M model: 8GB
- 1.4B model: 14GB
- 2.8B model: 28GB (FP16)
- **Inference**: 5× faster than Transformers
- **Memory**: No KV cache (lower than Transformers)
**Performance** (vs Transformers):
- **Speed**: 5× faster inference
- **Memory**: 50% less (no KV cache)
- **Scaling**: Linear vs quadratic
## Resources
- Paper (Mamba-1): https://arxiv.org/abs/2312.00752 (Dec 2023)
- Paper (Mamba-2): https://arxiv.org/abs/2405.21060 (May 2024)
- GitHub: https://github.com/state-spaces/mamba ⭐ 13,000+
- Models: https://huggingface.co/state-spaces
- Docs: Repository README and wiki
This skill packages the Mamba selective state-space models for linear-time sequence modeling and fast generation. It provides Mamba-1 (small state) and Mamba-2 (multi-head, larger state) implementations and ready-to-use LM wrappers with pretrained checkpoints. Expect O(n) complexity, no KV cache, and hardware-aware kernels for long sequences and low-latency inference.
The skill implements selective state-space models (SSMs) that replace quadratic attention with linear-time state updates, using compact state vectors and optimized CUDA kernels. Mamba-1 uses a small d_state for lightweight layers while Mamba-2 uses multi-head SSMs (larger d_state, RMSNorm, tensor parallelism) for higher capacity. The library includes LM head models, generation utilities, and HuggingFace-compatible checkpoints for straightforward loading and inference.
Do I need special hardware to run Mamba models?
NVIDIA GPU with CUDA 11.6+ and PyTorch 1.12+ is recommended; performance and provided VRAM guidance assume CUDA-enabled GPUs.
How much faster is Mamba versus transformers?
Typical generation is around 5× faster in benchmarks, with linear scaling and no KV cache lowering memory usage.
Which Mamba version should I pick?
Use Mamba-1 (d_state≈16) for lightweight, lower-cost setups and Mamba-2 (d_state≈128, multi-head) for higher capacity and distributed training.
How do I load pretrained models?
Use the supplied MambaLMHeadModel loader and matching tokenizer; several checkpoints are available for direct loading and generation.