home / skills / orchestra-research / ai-research-skills / llamaindex

llamaindex skill

/14-agents/llamaindex

This skill helps you build powerful RAG applications by ingesting documents, indexing data, and querying with LlamaIndex.

npx playbooks add skill orchestra-research/ai-research-skills --skill llamaindex

Review the files below or copy the command above to add this skill to your agents.

Files (4)
SKILL.md
14.4 KB
---
name: llamaindex
description: Data framework for building LLM applications with RAG. Specializes in document ingestion (300+ connectors), indexing, and querying. Features vector indices, query engines, agents, and multi-modal support. Use for document Q&A, chatbots, knowledge retrieval, or building RAG pipelines. Best for data-centric LLM applications.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Agents, LlamaIndex, RAG, Document Ingestion, Vector Indices, Query Engines, Knowledge Retrieval, Data Framework, Multimodal, Private Data, Connectors]
dependencies: [llama-index, openai, anthropic]
---

# LlamaIndex - Data Framework for LLM Applications

The leading framework for connecting LLMs with your data.

## When to use LlamaIndex

**Use LlamaIndex when:**
- Building RAG (retrieval-augmented generation) applications
- Need document question-answering over private data
- Ingesting data from multiple sources (300+ connectors)
- Creating knowledge bases for LLMs
- Building chatbots with enterprise data
- Need structured data extraction from documents

**Metrics**:
- **45,100+ GitHub stars**
- **23,000+ repositories** use LlamaIndex
- **300+ data connectors** (LlamaHub)
- **1,715+ contributors**
- **v0.14.7** (stable)

**Use alternatives instead**:
- **LangChain**: More general-purpose, better for agents
- **Haystack**: Production search pipelines
- **txtai**: Lightweight semantic search
- **Chroma**: Just need vector storage

## Quick start

### Installation

```bash
# Starter package (recommended)
pip install llama-index

# Or minimal core + specific integrations
pip install llama-index-core
pip install llama-index-llms-openai
pip install llama-index-embeddings-openai
```

### 5-line RAG example

```python
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader

# Load documents
documents = SimpleDirectoryReader("data").load_data()

# Create index
index = VectorStoreIndex.from_documents(documents)

# Query
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
```

## Core concepts

### 1. Data connectors - Load documents

```python
from llama_index.core import SimpleDirectoryReader, Document
from llama_index.readers.web import SimpleWebPageReader
from llama_index.readers.github import GithubRepositoryReader

# Directory of files
documents = SimpleDirectoryReader("./data").load_data()

# Web pages
reader = SimpleWebPageReader()
documents = reader.load_data(["https://example.com"])

# GitHub repository
reader = GithubRepositoryReader(owner="user", repo="repo")
documents = reader.load_data(branch="main")

# Manual document creation
doc = Document(
    text="This is the document content",
    metadata={"source": "manual", "date": "2025-01-01"}
)
```

### 2. Indices - Structure data

```python
from llama_index.core import VectorStoreIndex, ListIndex, TreeIndex

# Vector index (most common - semantic search)
vector_index = VectorStoreIndex.from_documents(documents)

# List index (sequential scan)
list_index = ListIndex.from_documents(documents)

# Tree index (hierarchical summary)
tree_index = TreeIndex.from_documents(documents)

# Save index
index.storage_context.persist(persist_dir="./storage")

# Load index
from llama_index.core import load_index_from_storage, StorageContext
storage_context = StorageContext.from_defaults(persist_dir="./storage")
index = load_index_from_storage(storage_context)
```

### 3. Query engines - Ask questions

```python
# Basic query
query_engine = index.as_query_engine()
response = query_engine.query("What is the main topic?")
print(response)

# Streaming response
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query("Explain quantum computing")
for text in response.response_gen:
    print(text, end="", flush=True)

# Custom configuration
query_engine = index.as_query_engine(
    similarity_top_k=3,          # Return top 3 chunks
    response_mode="compact",     # Or "tree_summarize", "simple_summarize"
    verbose=True
)
```

### 4. Retrievers - Find relevant chunks

```python
# Vector retriever
retriever = index.as_retriever(similarity_top_k=5)
nodes = retriever.retrieve("machine learning")

# With filtering
retriever = index.as_retriever(
    similarity_top_k=3,
    filters={"metadata.category": "tutorial"}
)

# Custom retriever
from llama_index.core.retrievers import BaseRetriever

class CustomRetriever(BaseRetriever):
    def _retrieve(self, query_bundle):
        # Your custom retrieval logic
        return nodes
```

## Agents with tools

### Basic agent

```python
from llama_index.core.agent import FunctionAgent
from llama_index.llms.openai import OpenAI

# Define tools
def multiply(a: int, b: int) -> int:
    """Multiply two numbers."""
    return a * b

def add(a: int, b: int) -> int:
    """Add two numbers."""
    return a + b

# Create agent
llm = OpenAI(model="gpt-4o")
agent = FunctionAgent.from_tools(
    tools=[multiply, add],
    llm=llm,
    verbose=True
)

# Use agent
response = agent.chat("What is 25 * 17 + 142?")
print(response)
```

### RAG agent (document search + tools)

```python
from llama_index.core.tools import QueryEngineTool

# Create index as before
index = VectorStoreIndex.from_documents(documents)

# Wrap query engine as tool
query_tool = QueryEngineTool.from_defaults(
    query_engine=index.as_query_engine(),
    name="python_docs",
    description="Useful for answering questions about Python programming"
)

# Agent with document search + calculator
agent = FunctionAgent.from_tools(
    tools=[query_tool, multiply, add],
    llm=llm
)

# Agent decides when to search docs vs calculate
response = agent.chat("According to the docs, what is Python used for?")
```

## Advanced RAG patterns

### Chat engine (conversational)

```python
from llama_index.core.chat_engine import CondensePlusContextChatEngine

# Chat with memory
chat_engine = index.as_chat_engine(
    chat_mode="condense_plus_context",  # Or "context", "react"
    verbose=True
)

# Multi-turn conversation
response1 = chat_engine.chat("What is Python?")
response2 = chat_engine.chat("Can you give examples?")  # Remembers context
response3 = chat_engine.chat("What about web frameworks?")
```

### Metadata filtering

```python
from llama_index.core.vector_stores import MetadataFilters, ExactMatchFilter

# Filter by metadata
filters = MetadataFilters(
    filters=[
        ExactMatchFilter(key="category", value="tutorial"),
        ExactMatchFilter(key="difficulty", value="beginner")
    ]
)

retriever = index.as_retriever(
    similarity_top_k=3,
    filters=filters
)

query_engine = index.as_query_engine(filters=filters)
```

### Structured output

```python
from pydantic import BaseModel
from llama_index.core.output_parsers import PydanticOutputParser

class Summary(BaseModel):
    title: str
    main_points: list[str]
    conclusion: str

# Get structured response
output_parser = PydanticOutputParser(output_cls=Summary)
query_engine = index.as_query_engine(output_parser=output_parser)

response = query_engine.query("Summarize the document")
summary = response  # Pydantic model
print(summary.title, summary.main_points)
```

## Data ingestion patterns

### Multiple file types

```python
# Load all supported formats
documents = SimpleDirectoryReader(
    "./data",
    recursive=True,
    required_exts=[".pdf", ".docx", ".txt", ".md"]
).load_data()
```

### Web scraping

```python
from llama_index.readers.web import BeautifulSoupWebReader

reader = BeautifulSoupWebReader()
documents = reader.load_data(urls=[
    "https://docs.python.org/3/tutorial/",
    "https://docs.python.org/3/library/"
])
```

### Database

```python
from llama_index.readers.database import DatabaseReader

reader = DatabaseReader(
    sql_database_uri="postgresql://user:pass@localhost/db"
)
documents = reader.load_data(query="SELECT * FROM articles")
```

### API endpoints

```python
from llama_index.readers.json import JSONReader

reader = JSONReader()
documents = reader.load_data("https://api.example.com/data.json")
```

## Vector store integrations

### Chroma (local)

```python
from llama_index.vector_stores.chroma import ChromaVectorStore
import chromadb

# Initialize Chroma
db = chromadb.PersistentClient(path="./chroma_db")
collection = db.get_or_create_collection("my_collection")

# Create vector store
vector_store = ChromaVectorStore(chroma_collection=collection)

# Use in index
from llama_index.core import StorageContext
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
```

### Pinecone (cloud)

```python
from llama_index.vector_stores.pinecone import PineconeVectorStore
import pinecone

# Initialize Pinecone
pinecone.init(api_key="your-key", environment="us-west1-gcp")
pinecone_index = pinecone.Index("my-index")

# Create vector store
vector_store = PineconeVectorStore(pinecone_index=pinecone_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
```

### FAISS (fast)

```python
from llama_index.vector_stores.faiss import FaissVectorStore
import faiss

# Create FAISS index
d = 1536  # Dimension of embeddings
faiss_index = faiss.IndexFlatL2(d)

vector_store = FaissVectorStore(faiss_index=faiss_index)
storage_context = StorageContext.from_defaults(vector_store=vector_store)

index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
```

## Customization

### Custom LLM

```python
from llama_index.llms.anthropic import Anthropic
from llama_index.core import Settings

# Set global LLM
Settings.llm = Anthropic(model="claude-sonnet-4-5-20250929")

# Now all queries use Anthropic
query_engine = index.as_query_engine()
```

### Custom embeddings

```python
from llama_index.embeddings.huggingface import HuggingFaceEmbedding

# Use HuggingFace embeddings
Settings.embed_model = HuggingFaceEmbedding(
    model_name="sentence-transformers/all-mpnet-base-v2"
)

index = VectorStoreIndex.from_documents(documents)
```

### Custom prompt templates

```python
from llama_index.core import PromptTemplate

qa_prompt = PromptTemplate(
    "Context: {context_str}\n"
    "Question: {query_str}\n"
    "Answer the question based only on the context. "
    "If the answer is not in the context, say 'I don't know'.\n"
    "Answer: "
)

query_engine = index.as_query_engine(text_qa_template=qa_prompt)
```

## Multi-modal RAG

### Image + text

```python
from llama_index.core import SimpleDirectoryReader
from llama_index.multi_modal_llms.openai import OpenAIMultiModal

# Load images and documents
documents = SimpleDirectoryReader(
    "./data",
    required_exts=[".jpg", ".png", ".pdf"]
).load_data()

# Multi-modal index
index = VectorStoreIndex.from_documents(documents)

# Query with multi-modal LLM
multi_modal_llm = OpenAIMultiModal(model="gpt-4o")
query_engine = index.as_query_engine(llm=multi_modal_llm)

response = query_engine.query("What is in the diagram on page 3?")
```

## Evaluation

### Response quality

```python
from llama_index.core.evaluation import RelevancyEvaluator, FaithfulnessEvaluator

# Evaluate relevance
relevancy = RelevancyEvaluator()
result = relevancy.evaluate_response(
    query="What is Python?",
    response=response
)
print(f"Relevancy: {result.passing}")

# Evaluate faithfulness (no hallucination)
faithfulness = FaithfulnessEvaluator()
result = faithfulness.evaluate_response(
    query="What is Python?",
    response=response
)
print(f"Faithfulness: {result.passing}")
```

## Best practices

1. **Use vector indices for most cases** - Best performance
2. **Save indices to disk** - Avoid re-indexing
3. **Chunk documents properly** - 512-1024 tokens optimal
4. **Add metadata** - Enables filtering and tracking
5. **Use streaming** - Better UX for long responses
6. **Enable verbose during dev** - See retrieval process
7. **Evaluate responses** - Check relevance and faithfulness
8. **Use chat engine for conversations** - Built-in memory
9. **Persist storage** - Don't lose your index
10. **Monitor costs** - Track embedding and LLM usage

## Common patterns

### Document Q&A system

```python
# Complete RAG pipeline
documents = SimpleDirectoryReader("docs").load_data()
index = VectorStoreIndex.from_documents(documents)
index.storage_context.persist(persist_dir="./storage")

# Query
query_engine = index.as_query_engine(
    similarity_top_k=3,
    response_mode="compact",
    verbose=True
)
response = query_engine.query("What is the main topic?")
print(response)
print(f"Sources: {[node.metadata['file_name'] for node in response.source_nodes]}")
```

### Chatbot with memory

```python
# Conversational interface
chat_engine = index.as_chat_engine(
    chat_mode="condense_plus_context",
    verbose=True
)

# Multi-turn chat
while True:
    user_input = input("You: ")
    if user_input.lower() == "quit":
        break
    response = chat_engine.chat(user_input)
    print(f"Bot: {response}")
```

## Performance benchmarks

| Operation | Latency | Notes |
|-----------|---------|-------|
| Index 100 docs | ~10-30s | One-time, can persist |
| Query (vector) | ~0.5-2s | Retrieval + LLM |
| Streaming query | ~0.5s first token | Better UX |
| Agent with tools | ~3-8s | Multiple tool calls |

## LlamaIndex vs LangChain

| Feature | LlamaIndex | LangChain |
|---------|------------|-----------|
| **Best for** | RAG, document Q&A | Agents, general LLM apps |
| **Data connectors** | 300+ (LlamaHub) | 100+ |
| **RAG focus** | Core feature | One of many |
| **Learning curve** | Easier for RAG | Steeper |
| **Customization** | High | Very high |
| **Documentation** | Excellent | Good |

**Use LlamaIndex when:**
- Your primary use case is RAG
- Need many data connectors
- Want simpler API for document Q&A
- Building knowledge retrieval system

**Use LangChain when:**
- Building complex agents
- Need more general-purpose tools
- Want more flexibility
- Complex multi-step workflows

## References

- **[Query Engines Guide](references/query_engines.md)** - Query modes, customization, streaming
- **[Agents Guide](references/agents.md)** - Tool creation, RAG agents, multi-step reasoning
- **[Data Connectors Guide](references/data_connectors.md)** - 300+ connectors, custom loaders

## Resources

- **GitHub**: https://github.com/run-llama/llama_index ⭐ 45,100+
- **Docs**: https://developers.llamaindex.ai/python/framework/
- **LlamaHub**: https://llamahub.ai (data connectors)
- **LlamaCloud**: https://cloud.llamaindex.ai (enterprise)
- **Discord**: https://discord.gg/dGcwcsnxhU
- **Version**: 0.14.7+
- **License**: MIT


Overview

This skill provides a data framework for building retrieval-augmented generation (RAG) applications and document-centric LLM systems. It focuses on robust document ingestion (300+ connectors), vector indexing, query engines, agents, and multi-modal support to power document Q&A, chatbots, and knowledge retrieval. Built for data-centric LLM workflows, it streamlines indexing, querying, and persistence for production and research use.

How this skill works

The skill ingests documents from many sources (files, web, databases, APIs, GitHub) and converts them into documents and metadata. It builds indices (vector, list, tree) and connects to vector stores (Chroma, FAISS, Pinecone) for fast retrieval. Query engines and retrievers return relevant chunks, which LLMs use to generate answers, and optional agents orchestrate tools and document search for decision-making. Persistence, filtering, streaming, and structured-output parsers are supported to make pipelines reliable and auditable.

When to use it

  • Building RAG systems or document Q&A over private data
  • Creating chatbots backed by enterprise documents or multi-modal assets
  • Ingesting heterogeneous data sources or building a centralized knowledge base
  • Needing fast semantic search with vector indices and metadata filters
  • Prototyping or productionizing document-centric LLM pipelines

Best practices

  • Prefer vector indices for semantic search; chunk documents ~512–1024 tokens
  • Persist indices to disk or a managed vector store to avoid re-indexing
  • Add metadata on ingestion to enable precise filtering and provenance
  • Enable streaming during development for better UX on long responses
  • Evaluate responses for relevance and faithfulness to reduce hallucinations
  • Use chat engines for multi-turn conversations and built-in memory

Example use cases

  • Document Q&A: ingest manuals, index them, and answer user questions with source citations
  • Enterprise chatbot: combine company docs, databases, and APIs for an internal assistant
  • RAG agent: let an agent decide when to search docs vs call helper tools (calculators, APIs)
  • Multi-modal retrieval: index images and PDFs and query diagrams alongside text
  • Evaluation pipeline: run relevancy and faithfulness evaluators to monitor model quality

FAQ

How many data connectors are available?

Over 300 connectors (LlamaHub) covering files, web, databases, APIs, and platform-specific readers.

Which index type should I use?

Use vector indices for most semantic search needs; tree or list indices are useful for hierarchical summarization or simple sequential scans.

Can I persist and reuse indexes?

Yes. Save storage context to disk or use external vector stores (Chroma, FAISS, Pinecone) to avoid re-indexing and enable fast production queries.