home / skills / orchestra-research / ai-research-skills / litgpt

litgpt skill

/01-model-architecture/litgpt

This skill helps you implement and train LLMs with LitGPT across 20+ pretrained architectures for clean, production-ready workflows.

npx playbooks add skill orchestra-research/ai-research-skills --skill litgpt

Review the files below or copy the command above to add this skill to your agents.

Files (5)
SKILL.md
10.8 KB
---
name: implementing-llms-litgpt
description: Implements and trains LLMs using Lightning AI's LitGPT with 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral). Use when need clean model implementations, educational understanding of architectures, or production fine-tuning with LoRA/QLoRA. Single-file implementations, no abstraction layers.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Model Architecture, LitGPT, Lightning AI, LLM Implementation, LoRA, QLoRA, Fine-Tuning, Llama, Gemma, Phi, Mistral, Educational]
dependencies: [litgpt, torch, transformers]
---

# LitGPT - Clean LLM Implementations

## Quick start

LitGPT provides 20+ pretrained LLM implementations with clean, readable code and production-ready training workflows.

**Installation**:
```bash
pip install 'litgpt[extra]'
```

**Load and use any model**:
```python
from litgpt import LLM

# Load pretrained model
llm = LLM.load("microsoft/phi-2")

# Generate text
result = llm.generate(
    "What is the capital of France?",
    max_new_tokens=50,
    temperature=0.7
)
print(result)
```

**List available models**:
```bash
litgpt download list
```

## Common workflows

### Workflow 1: Fine-tune on custom dataset

Copy this checklist:

```
Fine-Tuning Setup:
- [ ] Step 1: Download pretrained model
- [ ] Step 2: Prepare dataset
- [ ] Step 3: Configure training
- [ ] Step 4: Run fine-tuning
```

**Step 1: Download pretrained model**

```bash
# Download Llama 3 8B
litgpt download meta-llama/Meta-Llama-3-8B

# Download Phi-2 (smaller, faster)
litgpt download microsoft/phi-2

# Download Gemma 2B
litgpt download google/gemma-2b
```

Models are saved to `checkpoints/` directory.

**Step 2: Prepare dataset**

LitGPT supports multiple formats:

**Alpaca format** (instruction-response):
```json
[
  {
    "instruction": "What is the capital of France?",
    "input": "",
    "output": "The capital of France is Paris."
  },
  {
    "instruction": "Translate to Spanish: Hello, how are you?",
    "input": "",
    "output": "Hola, ¿cómo estás?"
  }
]
```

Save as `data/my_dataset.json`.

**Step 3: Configure training**

```bash
# Full fine-tuning (requires 40GB+ GPU for 7B models)
litgpt finetune \
  meta-llama/Meta-Llama-3-8B \
  --data JSON \
  --data.json_path data/my_dataset.json \
  --train.max_steps 1000 \
  --train.learning_rate 2e-5 \
  --train.micro_batch_size 1 \
  --train.global_batch_size 16

# LoRA fine-tuning (efficient, 16GB GPU)
litgpt finetune_lora \
  microsoft/phi-2 \
  --data JSON \
  --data.json_path data/my_dataset.json \
  --lora_r 16 \
  --lora_alpha 32 \
  --lora_dropout 0.05 \
  --train.max_steps 1000 \
  --train.learning_rate 1e-4
```

**Step 4: Run fine-tuning**

Training saves checkpoints to `out/finetune/` automatically.

Monitor training:
```bash
# View logs
tail -f out/finetune/logs.txt

# TensorBoard (if using --train.logger_name tensorboard)
tensorboard --logdir out/finetune/lightning_logs
```

### Workflow 2: LoRA fine-tuning on single GPU

Most memory-efficient option.

```
LoRA Training:
- [ ] Step 1: Choose base model
- [ ] Step 2: Configure LoRA parameters
- [ ] Step 3: Train with LoRA
- [ ] Step 4: Merge LoRA weights (optional)
```

**Step 1: Choose base model**

For limited GPU memory (12-16GB):
- **Phi-2** (2.7B) - Best quality/size tradeoff
- **Llama 3 1B** - Smallest, fastest
- **Gemma 2B** - Good reasoning

**Step 2: Configure LoRA parameters**

```bash
litgpt finetune_lora \
  microsoft/phi-2 \
  --data JSON \
  --data.json_path data/my_dataset.json \
  --lora_r 16 \          # LoRA rank (8-64, higher=more capacity)
  --lora_alpha 32 \      # LoRA scaling (typically 2×r)
  --lora_dropout 0.05 \  # Prevent overfitting
  --lora_query true \    # Apply LoRA to query projection
  --lora_key false \     # Usually not needed
  --lora_value true \    # Apply LoRA to value projection
  --lora_projection true \  # Apply LoRA to output projection
  --lora_mlp false \     # Usually not needed
  --lora_head false      # Usually not needed
```

LoRA rank guide:
- `r=8`: Lightweight, 2-4MB adapters
- `r=16`: Standard, good quality
- `r=32`: High capacity, use for complex tasks
- `r=64`: Maximum quality, 4× larger adapters

**Step 3: Train with LoRA**

```bash
litgpt finetune_lora \
  microsoft/phi-2 \
  --data JSON \
  --data.json_path data/my_dataset.json \
  --lora_r 16 \
  --train.epochs 3 \
  --train.learning_rate 1e-4 \
  --train.micro_batch_size 4 \
  --train.global_batch_size 32 \
  --out_dir out/phi2-lora

# Memory usage: ~8-12GB for Phi-2 with LoRA
```

**Step 4: Merge LoRA weights** (optional)

Merge LoRA adapters into base model for deployment:

```bash
litgpt merge_lora \
  out/phi2-lora/final \
  --out_dir out/phi2-merged
```

Now use merged model:
```python
from litgpt import LLM
llm = LLM.load("out/phi2-merged")
```

### Workflow 3: Pretrain from scratch

Train new model on your domain data.

```
Pretraining:
- [ ] Step 1: Prepare pretraining dataset
- [ ] Step 2: Configure model architecture
- [ ] Step 3: Set up multi-GPU training
- [ ] Step 4: Launch pretraining
```

**Step 1: Prepare pretraining dataset**

LitGPT expects tokenized data. Use `prepare_dataset.py`:

```bash
python scripts/prepare_dataset.py \
  --source_path data/my_corpus.txt \
  --checkpoint_dir checkpoints/tokenizer \
  --destination_path data/pretrain \
  --split train,val
```

**Step 2: Configure model architecture**

Edit config file or use existing:

```python
# config/pythia-160m.yaml
model_name: pythia-160m
block_size: 2048
vocab_size: 50304
n_layer: 12
n_head: 12
n_embd: 768
rotary_percentage: 0.25
parallel_residual: true
bias: true
```

**Step 3: Set up multi-GPU training**

```bash
# Single GPU
litgpt pretrain \
  --config config/pythia-160m.yaml \
  --data.data_dir data/pretrain \
  --train.max_tokens 10_000_000_000

# Multi-GPU with FSDP
litgpt pretrain \
  --config config/pythia-1b.yaml \
  --data.data_dir data/pretrain \
  --devices 8 \
  --train.max_tokens 100_000_000_000
```

**Step 4: Launch pretraining**

For large-scale pretraining on cluster:

```bash
# Using SLURM
sbatch --nodes=8 --gpus-per-node=8 \
  pretrain_script.sh

# pretrain_script.sh content:
litgpt pretrain \
  --config config/pythia-1b.yaml \
  --data.data_dir /shared/data/pretrain \
  --devices 8 \
  --num_nodes 8 \
  --train.global_batch_size 512 \
  --train.max_tokens 300_000_000_000
```

### Workflow 4: Convert and deploy model

Export LitGPT models for production.

```
Model Deployment:
- [ ] Step 1: Test inference locally
- [ ] Step 2: Quantize model (optional)
- [ ] Step 3: Convert to GGUF (for llama.cpp)
- [ ] Step 4: Deploy with API
```

**Step 1: Test inference locally**

```python
from litgpt import LLM

llm = LLM.load("out/phi2-lora/final")

# Single generation
print(llm.generate("What is machine learning?"))

# Streaming
for token in llm.generate("Explain quantum computing", stream=True):
    print(token, end="", flush=True)

# Batch inference
prompts = ["Hello", "Goodbye", "Thank you"]
results = [llm.generate(p) for p in prompts]
```

**Step 2: Quantize model** (optional)

Reduce model size with minimal quality loss:

```bash
# 8-bit quantization (50% size reduction)
litgpt convert_lit_checkpoint \
  out/phi2-lora/final \
  --dtype bfloat16 \
  --quantize bnb.nf4

# 4-bit quantization (75% size reduction)
litgpt convert_lit_checkpoint \
  out/phi2-lora/final \
  --quantize bnb.nf4-dq  # Double quantization
```

**Step 3: Convert to GGUF** (for llama.cpp)

```bash
python scripts/convert_lit_checkpoint.py \
  --checkpoint_path out/phi2-lora/final \
  --output_path models/phi2.gguf \
  --model_name microsoft/phi-2
```

**Step 4: Deploy with API**

```python
from fastapi import FastAPI
from litgpt import LLM

app = FastAPI()
llm = LLM.load("out/phi2-lora/final")

@app.post("/generate")
def generate(prompt: str, max_tokens: int = 100):
    result = llm.generate(
        prompt,
        max_new_tokens=max_tokens,
        temperature=0.7
    )
    return {"response": result}

# Run: uvicorn api:app --host 0.0.0.0 --port 8000
```

## When to use vs alternatives

**Use LitGPT when:**
- Want to understand LLM architectures (clean, readable code)
- Need production-ready training recipes
- Educational purposes or research
- Prototyping new model ideas
- Lightning ecosystem user

**Use alternatives instead:**
- **Axolotl/TRL**: More fine-tuning features, YAML configs
- **Megatron-Core**: Maximum performance for >70B models
- **HuggingFace Transformers**: Broadest model support
- **vLLM**: Inference-only (no training)

## Common issues

**Issue: Out of memory during fine-tuning**

Use LoRA instead of full fine-tuning:
```bash
# Instead of litgpt finetune (requires 40GB+)
litgpt finetune_lora  # Only needs 12-16GB
```

Or enable gradient checkpointing:
```bash
litgpt finetune_lora \
  ... \
  --train.gradient_accumulation_iters 4  # Accumulate gradients
```

**Issue: Training too slow**

Enable Flash Attention (built-in, automatic on compatible hardware):
```python
# Already enabled by default on Ampere+ GPUs (A100, RTX 30/40 series)
# No configuration needed
```

Use smaller micro-batch and accumulate:
```bash
--train.micro_batch_size 1 \
--train.global_batch_size 32 \
--train.gradient_accumulation_iters 32  # Effective batch=32
```

**Issue: Model not loading**

Check model name:
```bash
# List all available models
litgpt download list

# Download if not exists
litgpt download meta-llama/Meta-Llama-3-8B
```

Verify checkpoints directory:
```bash
ls checkpoints/
# Should see: meta-llama/Meta-Llama-3-8B/
```

**Issue: LoRA adapters too large**

Reduce LoRA rank:
```bash
--lora_r 8  # Instead of 16 or 32
```

Apply LoRA to fewer layers:
```bash
--lora_query true \
--lora_value true \
--lora_projection false \  # Disable this
--lora_mlp false  # And this
```

## Advanced topics

**Supported architectures**: See [references/supported-models.md](references/supported-models.md) for complete list of 20+ model families with sizes and capabilities.

**Training recipes**: See [references/training-recipes.md](references/training-recipes.md) for proven hyperparameter configurations for pretraining and fine-tuning.

**FSDP configuration**: See [references/distributed-training.md](references/distributed-training.md) for multi-GPU training with Fully Sharded Data Parallel.

**Custom architectures**: See [references/custom-models.md](references/custom-models.md) for implementing new model architectures in LitGPT style.

## Hardware requirements

- **GPU**: NVIDIA (CUDA 11.8+), AMD (ROCm), Apple Silicon (MPS)
- **Memory**:
  - Inference (Phi-2): 6GB
  - LoRA fine-tuning (7B): 16GB
  - Full fine-tuning (7B): 40GB+
  - Pretraining (1B): 24GB
- **Storage**: 5-50GB per model (depending on size)

## Resources

- GitHub: https://github.com/Lightning-AI/litgpt
- Docs: https://lightning.ai/docs/litgpt
- Tutorials: https://lightning.ai/docs/litgpt/tutorials
- Model zoo: 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral, Mixtral, Falcon, etc.)


Overview

This skill implements and trains large language models using Lightning AI's LitGPT with clean, single-file model implementations and production-ready training workflows. It exposes 20+ pretrained architectures (Llama, Gemma, Phi, Qwen, Mistral, etc.) and supports full fine-tuning, LoRA/QLoRA, pretraining, quantization, and model export. Use it when you need readable model code for research, reproducible training recipes, or efficient production fine-tuning pipelines.

How this skill works

The skill wraps LitGPT commands and Python APIs to download checkpoints, run fine-tuning (full and LoRA), pretrain from scratch, and export models for deployment. It provides single-file model implementations, training configuration options, dataset preparation helpers, and utilities for quantization and GGUF conversion. Training and inference integrate with Lightning features like FSDP, Flash Attention, and common logging tools (TensorBoard).

When to use it

  • You want a clean, educational implementation of popular LLM architectures for research or learning.
  • You need production-ready fine-tuning recipes with LoRA or full-weight training.
  • You must run memory-efficient LoRA training on a single GPU (12–16GB).
  • You plan to pretrain domain-specific models or experiment with custom architectures.
  • You want to export/quantize models for lightweight deployment (GGUF, llama.cpp).

Best practices

  • Prefer LoRA for limited GPU memory; full fine-tuning requires 40GB+ for 7B models.
  • Prepare datasets in supported formats (Alpaca JSON or tokenized pretraining data) and validate before training.
  • Use gradient accumulation and smaller micro-batches to fit large global batch sizes.
  • Enable Flash Attention on compatible hardware for faster training without config changes.
  • Merge LoRA adapters into the base model for low-latency deployment when needed.

Example use cases

  • Fine-tune Phi-2 with LoRA on a 12–16GB GPU for domain-specific customer support responses.
  • Pretrain a 160M or 1B model on proprietary text for specialized language modeling tasks.
  • Convert a fine-tuned checkpoint to GGUF and run locally with llama.cpp for edge inference.
  • Prototype custom transformer variants using single-file implementations to study architectural changes.
  • Build a FastAPI inference endpoint that loads merged or quantized checkpoints for production.

FAQ

Can I train with limited GPU memory?

Yes — use LoRA fine-tuning which can run in 12–16GB of GPU memory; reduce LoRA rank or enable gradient accumulation to save memory.

How do I deploy a fine-tuned model for low-latency inference?

Merge LoRA adapters into the base model, optionally quantize to 8-bit or 4-bit, convert to GGUF for llama.cpp, then serve via FastAPI or your preferred inference stack.