home / skills / orchestra-research / ai-research-skills / langchain
This skill helps you rapidly build LLM applications using agents, chains, and RAG with multi-provider support and robust tooling.
npx playbooks add skill orchestra-research/ai-research-skills --skill langchainReview the files below or copy the command above to add this skill to your agents.
---
name: langchain
description: Framework for building LLM-powered applications with agents, chains, and RAG. Supports multiple providers (OpenAI, Anthropic, Google), 500+ integrations, ReAct agents, tool calling, memory management, and vector store retrieval. Use for building chatbots, question-answering systems, autonomous agents, or RAG applications. Best for rapid prototyping and production deployments.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Agents, LangChain, RAG, Tool Calling, ReAct, Memory Management, Vector Stores, LLM Applications, Chatbots, Production]
dependencies: [langchain, langchain-core, langchain-openai, langchain-anthropic]
---
# LangChain - Build LLM Applications with Agents & RAG
The most popular framework for building LLM-powered applications.
## When to use LangChain
**Use LangChain when:**
- Building agents with tool calling and reasoning (ReAct pattern)
- Implementing RAG (retrieval-augmented generation) pipelines
- Need to swap LLM providers easily (OpenAI, Anthropic, Google)
- Creating chatbots with conversation memory
- Rapid prototyping of LLM applications
- Production deployments with LangSmith observability
**Metrics**:
- **119,000+ GitHub stars**
- **272,000+ repositories** use LangChain
- **500+ integrations** (models, vector stores, tools)
- **3,800+ contributors**
**Use alternatives instead**:
- **LlamaIndex**: RAG-focused, better for document Q&A
- **LangGraph**: Complex stateful workflows, more control
- **Haystack**: Production search pipelines
- **Semantic Kernel**: Microsoft ecosystem
## Quick start
### Installation
```bash
# Core library (Python 3.10+)
pip install -U langchain
# With OpenAI
pip install langchain-openai
# With Anthropic
pip install langchain-anthropic
# Common extras
pip install langchain-community # 500+ integrations
pip install langchain-chroma # Vector store
```
### Basic LLM usage
```python
from langchain_anthropic import ChatAnthropic
# Initialize model
llm = ChatAnthropic(model="claude-sonnet-4-5-20250929")
# Simple completion
response = llm.invoke("Explain quantum computing in 2 sentences")
print(response.content)
```
### Create an agent (ReAct pattern)
```python
from langchain.agents import create_agent
from langchain_anthropic import ChatAnthropic
# Define tools
def get_weather(city: str) -> str:
"""Get current weather for a city."""
return f"It's sunny in {city}, 72°F"
def search_web(query: str) -> str:
"""Search the web for information."""
return f"Search results for: {query}"
# Create agent (<10 lines!)
agent = create_agent(
model=ChatAnthropic(model="claude-sonnet-4-5-20250929"),
tools=[get_weather, search_web],
system_prompt="You are a helpful assistant. Use tools when needed."
)
# Run agent
result = agent.invoke({"messages": [{"role": "user", "content": "What's the weather in Paris?"}]})
print(result["messages"][-1].content)
```
## Core concepts
### 1. Models - LLM abstraction
```python
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain_google_genai import ChatGoogleGenerativeAI
# Swap providers easily
llm = ChatOpenAI(model="gpt-4o")
llm = ChatAnthropic(model="claude-sonnet-4-5-20250929")
llm = ChatGoogleGenerativeAI(model="gemini-2.0-flash-exp")
# Streaming
for chunk in llm.stream("Write a poem"):
print(chunk.content, end="", flush=True)
```
### 2. Chains - Sequential operations
```python
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# Define prompt template
prompt = PromptTemplate(
input_variables=["topic"],
template="Write a 3-sentence summary about {topic}"
)
# Create chain
chain = LLMChain(llm=llm, prompt=prompt)
# Run chain
result = chain.run(topic="machine learning")
```
### 3. Agents - Tool-using reasoning
**ReAct (Reasoning + Acting) pattern:**
```python
from langchain.agents import create_tool_calling_agent, AgentExecutor
from langchain.tools import Tool
# Define custom tool
calculator = Tool(
name="Calculator",
func=lambda x: eval(x),
description="Useful for math calculations. Input: valid Python expression."
)
# Create agent with tools
agent = create_tool_calling_agent(
llm=llm,
tools=[calculator, search_web],
prompt="Answer questions using available tools"
)
# Create executor
agent_executor = AgentExecutor(agent=agent, tools=[calculator], verbose=True)
# Run with reasoning
result = agent_executor.invoke({"input": "What is 25 * 17 + 142?"})
```
### 4. Memory - Conversation history
```python
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationChain
# Add memory to track conversation
memory = ConversationBufferMemory()
conversation = ConversationChain(
llm=llm,
memory=memory,
verbose=True
)
# Multi-turn conversation
conversation.predict(input="Hi, I'm Alice")
conversation.predict(input="What's my name?") # Remembers "Alice"
```
## RAG (Retrieval-Augmented Generation)
### Basic RAG pipeline
```python
from langchain_community.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_chroma import Chroma
from langchain.chains import RetrievalQA
# 1. Load documents
loader = WebBaseLoader("https://docs.python.org/3/tutorial/")
docs = loader.load()
# 2. Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200
)
splits = text_splitter.split_documents(docs)
# 3. Create embeddings and vector store
vectorstore = Chroma.from_documents(
documents=splits,
embedding=OpenAIEmbeddings()
)
# 4. Create retriever
retriever = vectorstore.as_retriever(search_kwargs={"k": 4})
# 5. Create QA chain
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
retriever=retriever,
return_source_documents=True
)
# 6. Query
result = qa_chain({"query": "What are Python decorators?"})
print(result["result"])
print(f"Sources: {result['source_documents']}")
```
### Conversational RAG with memory
```python
from langchain.chains import ConversationalRetrievalChain
# RAG with conversation memory
qa = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=retriever,
memory=ConversationBufferMemory(
memory_key="chat_history",
return_messages=True
)
)
# Multi-turn RAG
qa({"question": "What is Python used for?"})
qa({"question": "Can you elaborate on web development?"}) # Remembers context
```
## Advanced agent patterns
### Structured output
```python
from langchain_core.pydantic_v1 import BaseModel, Field
# Define schema
class WeatherReport(BaseModel):
city: str = Field(description="City name")
temperature: float = Field(description="Temperature in Fahrenheit")
condition: str = Field(description="Weather condition")
# Get structured response
structured_llm = llm.with_structured_output(WeatherReport)
result = structured_llm.invoke("What's the weather in SF? It's 65F and sunny")
print(result.city, result.temperature, result.condition)
```
### Parallel tool execution
```python
from langchain.agents import create_tool_calling_agent
# Agent automatically parallelizes independent tool calls
agent = create_tool_calling_agent(
llm=llm,
tools=[get_weather, search_web, calculator]
)
# This will call get_weather("Paris") and get_weather("London") in parallel
result = agent.invoke({
"messages": [{"role": "user", "content": "Compare weather in Paris and London"}]
})
```
### Streaming agent execution
```python
# Stream agent steps
for step in agent_executor.stream({"input": "Research AI trends"}):
if "actions" in step:
print(f"Tool: {step['actions'][0].tool}")
if "output" in step:
print(f"Output: {step['output']}")
```
## Common patterns
### Multi-document QA
```python
from langchain.chains.qa_with_sources import load_qa_with_sources_chain
# Load multiple documents
docs = [
loader.load("https://docs.python.org"),
loader.load("https://docs.numpy.org")
]
# QA with source citations
chain = load_qa_with_sources_chain(llm, chain_type="stuff")
result = chain({"input_documents": docs, "question": "How to use numpy arrays?"})
print(result["output_text"]) # Includes source citations
```
### Custom tools with error handling
```python
from langchain.tools import tool
@tool
def risky_operation(query: str) -> str:
"""Perform a risky operation that might fail."""
try:
# Your operation here
result = perform_operation(query)
return f"Success: {result}"
except Exception as e:
return f"Error: {str(e)}"
# Agent handles errors gracefully
agent = create_agent(model=llm, tools=[risky_operation])
```
### LangSmith observability
```python
import os
# Enable tracing
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_API_KEY"] = "your-api-key"
os.environ["LANGCHAIN_PROJECT"] = "my-project"
# All chains/agents automatically traced
agent = create_agent(model=llm, tools=[calculator])
result = agent.invoke({"input": "Calculate 123 * 456"})
# View traces at smith.langchain.com
```
## Vector stores
### Chroma (local)
```python
from langchain_chroma import Chroma
vectorstore = Chroma.from_documents(
documents=docs,
embedding=OpenAIEmbeddings(),
persist_directory="./chroma_db"
)
```
### Pinecone (cloud)
```python
from langchain_pinecone import PineconeVectorStore
vectorstore = PineconeVectorStore.from_documents(
documents=docs,
embedding=OpenAIEmbeddings(),
index_name="my-index"
)
```
### FAISS (similarity search)
```python
from langchain_community.vectorstores import FAISS
vectorstore = FAISS.from_documents(docs, OpenAIEmbeddings())
vectorstore.save_local("faiss_index")
# Load later
vectorstore = FAISS.load_local("faiss_index", OpenAIEmbeddings())
```
## Document loaders
```python
# Web pages
from langchain_community.document_loaders import WebBaseLoader
loader = WebBaseLoader("https://example.com")
# PDFs
from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader("paper.pdf")
# GitHub
from langchain_community.document_loaders import GithubFileLoader
loader = GithubFileLoader(repo="user/repo", file_filter=lambda x: x.endswith(".py"))
# CSV
from langchain_community.document_loaders import CSVLoader
loader = CSVLoader("data.csv")
```
## Text splitters
```python
# Recursive (recommended for general text)
from langchain.text_splitter import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
separators=["\n\n", "\n", " ", ""]
)
# Code-aware
from langchain.text_splitter import PythonCodeTextSplitter
splitter = PythonCodeTextSplitter(chunk_size=500)
# Semantic (by meaning)
from langchain_experimental.text_splitter import SemanticChunker
splitter = SemanticChunker(OpenAIEmbeddings())
```
## Best practices
1. **Start simple** - Use `create_agent()` for most cases
2. **Enable streaming** - Better UX for long responses
3. **Add error handling** - Tools can fail, handle gracefully
4. **Use LangSmith** - Essential for debugging agents
5. **Optimize chunk size** - 500-1000 chars for RAG
6. **Version prompts** - Track changes in production
7. **Cache embeddings** - Expensive, cache when possible
8. **Monitor costs** - Track token usage with LangSmith
## Performance benchmarks
| Operation | Latency | Notes |
|-----------|---------|-------|
| Simple LLM call | ~1-2s | Depends on provider |
| Agent with 1 tool | ~3-5s | ReAct reasoning overhead |
| RAG retrieval | ~0.5-1s | Vector search + LLM |
| Embedding 1000 docs | ~10-30s | Depends on model |
## LangChain vs LangGraph
| Feature | LangChain | LangGraph |
|---------|-----------|-----------|
| **Best for** | Quick agents, RAG | Complex workflows |
| **Abstraction level** | High | Low |
| **Code to start** | <10 lines | ~30 lines |
| **Control** | Simple | Full control |
| **Stateful workflows** | Limited | Native |
| **Cyclic graphs** | No | Yes |
| **Human-in-loop** | Basic | Advanced |
**Use LangGraph when:**
- Need stateful workflows with cycles
- Require fine-grained control
- Building multi-agent systems
- Production apps with complex logic
## References
- **[Agents Guide](references/agents.md)** - ReAct, tool calling, streaming
- **[RAG Guide](references/rag.md)** - Document loaders, retrievers, QA chains
- **[Integration Guide](references/integration.md)** - Vector stores, LangSmith, deployment
## Resources
- **GitHub**: https://github.com/langchain-ai/langchain ⭐ 119,000+
- **Docs**: https://docs.langchain.com
- **API Reference**: https://reference.langchain.com/python
- **LangSmith**: https://smith.langchain.com (observability)
- **Version**: 0.3+ (stable)
- **License**: MIT
This skill packages LangChain, a framework for building LLM-powered applications with agents, chains, and retrieval-augmented generation (RAG). It supports multiple model providers, 500+ integrations, tool calling, memory management, vector stores, and production observability. Use it to prototype quickly or run robust agent and RAG systems in production.
LangChain provides abstractions for models, chains, agents, memory, and retrievers so you can compose LLM calls with tool use and document retrieval. Define LLMs from different providers, create prompt-driven chains, attach memory for multi-turn chat, or wire up vector stores and retrievers for RAG pipelines. Agents implement the ReAct pattern to call tools, reason, and produce structured outputs or parallel/streaming executions.
Which provider models does this integrate with?
LangChain supports OpenAI, Anthropic, Google, and many community integrations so you can swap providers without rewriting pipelines.
When should I use LangChain vs a RAG-focused alternative?
Use LangChain for agent tooling, multi-component pipelines, and production observability. Choose RAG-focused tools like LlamaIndex if your primary need is document-centric Q&A with fewer agent features.