home / skills / orchestra-research / ai-research-skills / lambda-labs
This skill helps you manage Lambda Labs GPU Cloud resources for scalable ML training and inference with persistent storage and easy SSH access.
npx playbooks add skill orchestra-research/ai-research-skills --skill lambda-labsReview the files below or copy the command above to add this skill to your agents.
---
name: lambda-labs-gpu-cloud
description: Reserved and on-demand GPU cloud instances for ML training and inference. Use when you need dedicated GPU instances with simple SSH access, persistent filesystems, or high-performance multi-node clusters for large-scale training.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Infrastructure, GPU Cloud, Training, Inference, Lambda Labs]
dependencies: [lambda-cloud-client>=1.0.0]
---
# Lambda Labs GPU Cloud
Comprehensive guide to running ML workloads on Lambda Labs GPU cloud with on-demand instances and 1-Click Clusters.
## When to use Lambda Labs
**Use Lambda Labs when:**
- Need dedicated GPU instances with full SSH access
- Running long training jobs (hours to days)
- Want simple pricing with no egress fees
- Need persistent storage across sessions
- Require high-performance multi-node clusters (16-512 GPUs)
- Want pre-installed ML stack (Lambda Stack with PyTorch, CUDA, NCCL)
**Key features:**
- **GPU variety**: B200, H100, GH200, A100, A10, A6000, V100
- **Lambda Stack**: Pre-installed PyTorch, TensorFlow, CUDA, cuDNN, NCCL
- **Persistent filesystems**: Keep data across instance restarts
- **1-Click Clusters**: 16-512 GPU Slurm clusters with InfiniBand
- **Simple pricing**: Pay-per-minute, no egress fees
- **Global regions**: 12+ regions worldwide
**Use alternatives instead:**
- **Modal**: For serverless, auto-scaling workloads
- **SkyPilot**: For multi-cloud orchestration and cost optimization
- **RunPod**: For cheaper spot instances and serverless endpoints
- **Vast.ai**: For GPU marketplace with lowest prices
## Quick start
### Account setup
1. Create account at https://lambda.ai
2. Add payment method
3. Generate API key from dashboard
4. Add SSH key (required before launching instances)
### Launch via console
1. Go to https://cloud.lambda.ai/instances
2. Click "Launch instance"
3. Select GPU type and region
4. Choose SSH key
5. Optionally attach filesystem
6. Launch and wait 3-15 minutes
### Connect via SSH
```bash
# Get instance IP from console
ssh ubuntu@<INSTANCE-IP>
# Or with specific key
ssh -i ~/.ssh/lambda_key ubuntu@<INSTANCE-IP>
```
## GPU instances
### Available GPUs
| GPU | VRAM | Price/GPU/hr | Best For |
|-----|------|--------------|----------|
| B200 SXM6 | 180 GB | $4.99 | Largest models, fastest training |
| H100 SXM | 80 GB | $2.99-3.29 | Large model training |
| H100 PCIe | 80 GB | $2.49 | Cost-effective H100 |
| GH200 | 96 GB | $1.49 | Single-GPU large models |
| A100 80GB | 80 GB | $1.79 | Production training |
| A100 40GB | 40 GB | $1.29 | Standard training |
| A10 | 24 GB | $0.75 | Inference, fine-tuning |
| A6000 | 48 GB | $0.80 | Good VRAM/price ratio |
| V100 | 16 GB | $0.55 | Budget training |
### Instance configurations
```
8x GPU: Best for distributed training (DDP, FSDP)
4x GPU: Large models, multi-GPU training
2x GPU: Medium workloads
1x GPU: Fine-tuning, inference, development
```
### Launch times
- Single-GPU: 3-5 minutes
- Multi-GPU: 10-15 minutes
## Lambda Stack
All instances come with Lambda Stack pre-installed:
```bash
# Included software
- Ubuntu 22.04 LTS
- NVIDIA drivers (latest)
- CUDA 12.x
- cuDNN 8.x
- NCCL (for multi-GPU)
- PyTorch (latest)
- TensorFlow (latest)
- JAX
- JupyterLab
```
### Verify installation
```bash
# Check GPU
nvidia-smi
# Check PyTorch
python -c "import torch; print(torch.cuda.is_available())"
# Check CUDA version
nvcc --version
```
## Python API
### Installation
```bash
pip install lambda-cloud-client
```
### Authentication
```python
import os
import lambda_cloud_client
# Configure with API key
configuration = lambda_cloud_client.Configuration(
host="https://cloud.lambdalabs.com/api/v1",
access_token=os.environ["LAMBDA_API_KEY"]
)
```
### List available instances
```python
with lambda_cloud_client.ApiClient(configuration) as api_client:
api = lambda_cloud_client.DefaultApi(api_client)
# Get available instance types
types = api.instance_types()
for name, info in types.data.items():
print(f"{name}: {info.instance_type.description}")
```
### Launch instance
```python
from lambda_cloud_client.models import LaunchInstanceRequest
request = LaunchInstanceRequest(
region_name="us-west-1",
instance_type_name="gpu_1x_h100_sxm5",
ssh_key_names=["my-ssh-key"],
file_system_names=["my-filesystem"], # Optional
name="training-job"
)
response = api.launch_instance(request)
instance_id = response.data.instance_ids[0]
print(f"Launched: {instance_id}")
```
### List running instances
```python
instances = api.list_instances()
for instance in instances.data:
print(f"{instance.name}: {instance.ip} ({instance.status})")
```
### Terminate instance
```python
from lambda_cloud_client.models import TerminateInstanceRequest
request = TerminateInstanceRequest(
instance_ids=[instance_id]
)
api.terminate_instance(request)
```
### SSH key management
```python
from lambda_cloud_client.models import AddSshKeyRequest
# Add SSH key
request = AddSshKeyRequest(
name="my-key",
public_key="ssh-rsa AAAA..."
)
api.add_ssh_key(request)
# List keys
keys = api.list_ssh_keys()
# Delete key
api.delete_ssh_key(key_id)
```
## CLI with curl
### List instance types
```bash
curl -u $LAMBDA_API_KEY: \
https://cloud.lambdalabs.com/api/v1/instance-types | jq
```
### Launch instance
```bash
curl -u $LAMBDA_API_KEY: \
-X POST https://cloud.lambdalabs.com/api/v1/instance-operations/launch \
-H "Content-Type: application/json" \
-d '{
"region_name": "us-west-1",
"instance_type_name": "gpu_1x_h100_sxm5",
"ssh_key_names": ["my-key"]
}' | jq
```
### Terminate instance
```bash
curl -u $LAMBDA_API_KEY: \
-X POST https://cloud.lambdalabs.com/api/v1/instance-operations/terminate \
-H "Content-Type: application/json" \
-d '{"instance_ids": ["<INSTANCE-ID>"]}' | jq
```
## Persistent storage
### Filesystems
Filesystems persist data across instance restarts:
```bash
# Mount location
/lambda/nfs/<FILESYSTEM_NAME>
# Example: save checkpoints
python train.py --checkpoint-dir /lambda/nfs/my-storage/checkpoints
```
### Create filesystem
1. Go to Storage in Lambda console
2. Click "Create filesystem"
3. Select region (must match instance region)
4. Name and create
### Attach to instance
Filesystems must be attached at instance launch time:
- Via console: Select filesystem when launching
- Via API: Include `file_system_names` in launch request
### Best practices
```bash
# Store on filesystem (persists)
/lambda/nfs/storage/
├── datasets/
├── checkpoints/
├── models/
└── outputs/
# Local SSD (faster, ephemeral)
/home/ubuntu/
└── working/ # Temporary files
```
## SSH configuration
### Add SSH key
```bash
# Generate key locally
ssh-keygen -t ed25519 -f ~/.ssh/lambda_key
# Add public key to Lambda console
# Or via API
```
### Multiple keys
```bash
# On instance, add more keys
echo 'ssh-rsa AAAA...' >> ~/.ssh/authorized_keys
```
### Import from GitHub
```bash
# On instance
ssh-import-id gh:username
```
### SSH tunneling
```bash
# Forward Jupyter
ssh -L 8888:localhost:8888 ubuntu@<IP>
# Forward TensorBoard
ssh -L 6006:localhost:6006 ubuntu@<IP>
# Multiple ports
ssh -L 8888:localhost:8888 -L 6006:localhost:6006 ubuntu@<IP>
```
## JupyterLab
### Launch from console
1. Go to Instances page
2. Click "Launch" in Cloud IDE column
3. JupyterLab opens in browser
### Manual access
```bash
# On instance
jupyter lab --ip=0.0.0.0 --port=8888
# From local machine with tunnel
ssh -L 8888:localhost:8888 ubuntu@<IP>
# Open http://localhost:8888
```
## Training workflows
### Single-GPU training
```bash
# SSH to instance
ssh ubuntu@<IP>
# Clone repo
git clone https://github.com/user/project
cd project
# Install dependencies
pip install -r requirements.txt
# Train
python train.py --epochs 100 --checkpoint-dir /lambda/nfs/storage/checkpoints
```
### Multi-GPU training (single node)
```python
# train_ddp.py
import torch
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
def main():
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
model = MyModel().to(device)
model = DDP(model, device_ids=[device])
# Training loop...
if __name__ == "__main__":
main()
```
```bash
# Launch with torchrun (8 GPUs)
torchrun --nproc_per_node=8 train_ddp.py
```
### Checkpoint to filesystem
```python
import os
checkpoint_dir = "/lambda/nfs/my-storage/checkpoints"
os.makedirs(checkpoint_dir, exist_ok=True)
# Save checkpoint
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss,
}, f"{checkpoint_dir}/checkpoint_{epoch}.pt")
```
## 1-Click Clusters
### Overview
High-performance Slurm clusters with:
- 16-512 NVIDIA H100 or B200 GPUs
- NVIDIA Quantum-2 400 Gb/s InfiniBand
- GPUDirect RDMA at 3200 Gb/s
- Pre-installed distributed ML stack
### Included software
- Ubuntu 22.04 LTS + Lambda Stack
- NCCL, Open MPI
- PyTorch with DDP and FSDP
- TensorFlow
- OFED drivers
### Storage
- 24 TB NVMe per compute node (ephemeral)
- Lambda filesystems for persistent data
### Multi-node training
```bash
# On Slurm cluster
srun --nodes=4 --ntasks-per-node=8 --gpus-per-node=8 \
torchrun --nnodes=4 --nproc_per_node=8 \
--rdzv_backend=c10d --rdzv_endpoint=$MASTER_ADDR:29500 \
train.py
```
## Networking
### Bandwidth
- Inter-instance (same region): up to 200 Gbps
- Internet outbound: 20 Gbps max
### Firewall
- Default: Only port 22 (SSH) open
- Configure additional ports in Lambda console
- ICMP traffic allowed by default
### Private IPs
```bash
# Find private IP
ip addr show | grep 'inet '
```
## Common workflows
### Workflow 1: Fine-tuning LLM
```bash
# 1. Launch 8x H100 instance with filesystem
# 2. SSH and setup
ssh ubuntu@<IP>
pip install transformers accelerate peft
# 3. Download model to filesystem
python -c "
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf')
model.save_pretrained('/lambda/nfs/storage/models/llama-2-7b')
"
# 4. Fine-tune with checkpoints on filesystem
accelerate launch --num_processes 8 train.py \
--model_path /lambda/nfs/storage/models/llama-2-7b \
--output_dir /lambda/nfs/storage/outputs \
--checkpoint_dir /lambda/nfs/storage/checkpoints
```
### Workflow 2: Batch inference
```bash
# 1. Launch A10 instance (cost-effective for inference)
# 2. Run inference
python inference.py \
--model /lambda/nfs/storage/models/fine-tuned \
--input /lambda/nfs/storage/data/inputs.jsonl \
--output /lambda/nfs/storage/data/outputs.jsonl
```
## Cost optimization
### Choose right GPU
| Task | Recommended GPU |
|------|-----------------|
| LLM fine-tuning (7B) | A100 40GB |
| LLM fine-tuning (70B) | 8x H100 |
| Inference | A10, A6000 |
| Development | V100, A10 |
| Maximum performance | B200 |
### Reduce costs
1. **Use filesystems**: Avoid re-downloading data
2. **Checkpoint frequently**: Resume interrupted training
3. **Right-size**: Don't over-provision GPUs
4. **Terminate idle**: No auto-stop, manually terminate
### Monitor usage
- Dashboard shows real-time GPU utilization
- API for programmatic monitoring
## Common issues
| Issue | Solution |
|-------|----------|
| Instance won't launch | Check region availability, try different GPU |
| SSH connection refused | Wait for instance to initialize (3-15 min) |
| Data lost after terminate | Use persistent filesystems |
| Slow data transfer | Use filesystem in same region |
| GPU not detected | Reboot instance, check drivers |
## References
- **[Advanced Usage](references/advanced-usage.md)** - Multi-node training, API automation
- **[Troubleshooting](references/troubleshooting.md)** - Common issues and solutions
## Resources
- **Documentation**: https://docs.lambda.ai
- **Console**: https://cloud.lambda.ai
- **Pricing**: https://lambda.ai/instances
- **Support**: https://support.lambdalabs.com
- **Blog**: https://lambda.ai/blog
This skill provides a practical guide to running ML training and inference on Lambda Labs GPU Cloud. It highlights how to launch reserved and on‑demand GPU instances, attach persistent filesystems, and run single-node or multi-node distributed jobs with simple SSH access. The content focuses on fast setup, cost-aware GPU selection, and production‑grade cluster workflows.
The skill explains the console, API, and CLI steps to create instances, add SSH keys, and attach persistent filesystems. It documents available GPU types, preinstalled Lambda Stack software, verification commands, and examples for launching single‑GPU, multi‑GPU, and Slurm 1‑Click clusters. It also covers networking, storage patterns, checkpointing, and cost‑optimization tactics for ML workloads.
How long does an instance take to launch?
Single‑GPU instances typically launch in 3–5 minutes; multi‑GPU or multi‑node setups can take 10–15 minutes.
How do I persist data across instance restarts?
Create and attach a Lambda filesystem in the same region and store datasets, checkpoints, and models under /lambda/nfs/<name>.
Which GPU should I pick for inference vs training?
Use A10/A6000 for inference and development; A100/H100/B200 for production training depending on model size and budget.