home / skills / orchestra-research / ai-research-skills / hqq
This skill enables calibration-free 4/3/2-bit model quantization using HQQ for fast, deployment-ready quantization with HuggingFace and vLLM.
npx playbooks add skill orchestra-research/ai-research-skills --skill hqqReview the files below or copy the command above to add this skill to your agents.
---
name: hqq-quantization
description: Half-Quadratic Quantization for LLMs without calibration data. Use when quantizing models to 4/3/2-bit precision without needing calibration datasets, for fast quantization workflows, or when deploying with vLLM or HuggingFace Transformers.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Quantization, HQQ, Optimization, Memory Efficiency, Inference, Model Compression]
dependencies: [hqq>=0.2.0, torch>=2.0.0]
---
# HQQ - Half-Quadratic Quantization
Fast, calibration-free weight quantization supporting 8/4/3/2/1-bit precision with multiple optimized backends.
## When to use HQQ
**Use HQQ when:**
- Quantizing models without calibration data (no dataset needed)
- Need fast quantization (minutes vs hours for GPTQ/AWQ)
- Deploying with vLLM or HuggingFace Transformers
- Fine-tuning quantized models with LoRA/PEFT
- Experimenting with extreme quantization (2-bit, 1-bit)
**Key advantages:**
- **No calibration**: Quantize any model instantly without sample data
- **Multiple backends**: PyTorch, ATEN, TorchAO, Marlin, BitBlas for optimized inference
- **Flexible precision**: 8/4/3/2/1-bit with configurable group sizes
- **Framework integration**: Native HuggingFace and vLLM support
- **PEFT compatible**: Fine-tune quantized models with LoRA
**Use alternatives instead:**
- **AWQ**: Need calibration-based accuracy, production serving
- **GPTQ**: Maximum accuracy with calibration data available
- **bitsandbytes**: Simple 8-bit/4-bit without custom backends
- **llama.cpp/GGUF**: CPU inference, Apple Silicon deployment
## Quick start
### Installation
```bash
pip install hqq
# With specific backend
pip install hqq[torch] # PyTorch backend
pip install hqq[torchao] # TorchAO int4 backend
pip install hqq[bitblas] # BitBlas backend
pip install hqq[marlin] # Marlin backend
```
### Basic quantization
```python
from hqq.core.quantize import BaseQuantizeConfig, HQQLinear
import torch.nn as nn
# Configure quantization
config = BaseQuantizeConfig(
nbits=4, # 4-bit quantization
group_size=64, # Group size for quantization
axis=1 # Quantize along output dimension
)
# Quantize a linear layer
linear = nn.Linear(4096, 4096)
hqq_linear = HQQLinear(linear, config)
# Use normally
output = hqq_linear(input_tensor)
```
### Quantize full model with HuggingFace
```python
from transformers import AutoModelForCausalLM, HqqConfig
# Configure HQQ
quantization_config = HqqConfig(
nbits=4,
group_size=64,
axis=1
)
# Load and quantize
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=quantization_config,
device_map="auto"
)
# Model is quantized and ready to use
```
## Core concepts
### Quantization configuration
HQQ uses `BaseQuantizeConfig` to define quantization parameters:
```python
from hqq.core.quantize import BaseQuantizeConfig
# Standard 4-bit config
config_4bit = BaseQuantizeConfig(
nbits=4, # Bits per weight (1-8)
group_size=64, # Weights per quantization group
axis=1 # 0=input dim, 1=output dim
)
# Aggressive 2-bit config
config_2bit = BaseQuantizeConfig(
nbits=2,
group_size=16, # Smaller groups for low-bit
axis=1
)
# Mixed precision per layer type
layer_configs = {
"self_attn.q_proj": BaseQuantizeConfig(nbits=4, group_size=64),
"self_attn.k_proj": BaseQuantizeConfig(nbits=4, group_size=64),
"self_attn.v_proj": BaseQuantizeConfig(nbits=4, group_size=64),
"mlp.gate_proj": BaseQuantizeConfig(nbits=2, group_size=32),
"mlp.up_proj": BaseQuantizeConfig(nbits=2, group_size=32),
"mlp.down_proj": BaseQuantizeConfig(nbits=4, group_size=64),
}
```
### HQQLinear layer
The core quantized layer that replaces `nn.Linear`:
```python
from hqq.core.quantize import HQQLinear
import torch
# Create quantized layer
linear = torch.nn.Linear(4096, 4096)
hqq_layer = HQQLinear(linear, config)
# Access quantized weights
W_q = hqq_layer.W_q # Quantized weights
scale = hqq_layer.scale # Scale factors
zero = hqq_layer.zero # Zero points
# Dequantize for inspection
W_dequant = hqq_layer.dequantize()
```
### Backends
HQQ supports multiple inference backends for different hardware:
```python
from hqq.core.quantize import HQQLinear
# Available backends
backends = [
"pytorch", # Pure PyTorch (default)
"pytorch_compile", # torch.compile optimized
"aten", # Custom CUDA kernels
"torchao_int4", # TorchAO int4 matmul
"gemlite", # GemLite CUDA kernels
"bitblas", # BitBlas optimized
"marlin", # Marlin 4-bit kernels
]
# Set backend globally
HQQLinear.set_backend("torchao_int4")
# Or per layer
hqq_layer.set_backend("marlin")
```
**Backend selection guide:**
| Backend | Best For | Requirements |
|---------|----------|--------------|
| pytorch | Compatibility | Any GPU |
| pytorch_compile | Moderate speedup | torch>=2.0 |
| aten | Good balance | CUDA GPU |
| torchao_int4 | 4-bit inference | torchao installed |
| marlin | Maximum 4-bit speed | Ampere+ GPU |
| bitblas | Flexible bit-widths | bitblas installed |
## HuggingFace integration
### Load pre-quantized models
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load HQQ-quantized model from Hub
model = AutoModelForCausalLM.from_pretrained(
"mobiuslabsgmbh/Llama-3.1-8B-HQQ-4bit",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
# Use normally
inputs = tokenizer("Hello, world!", return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=50)
```
### Quantize and save
```python
from transformers import AutoModelForCausalLM, HqqConfig
# Quantize
config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="auto"
)
# Save quantized model
model.save_pretrained("./llama-8b-hqq-4bit")
# Push to Hub
model.push_to_hub("my-org/Llama-3.1-8B-HQQ-4bit")
```
### Mixed precision quantization
```python
from transformers import AutoModelForCausalLM, HqqConfig
# Different precision per layer type
config = HqqConfig(
nbits=4,
group_size=64,
# Attention layers: higher precision
# MLP layers: lower precision for memory savings
dynamic_config={
"attn": {"nbits": 4, "group_size": 64},
"mlp": {"nbits": 2, "group_size": 32}
}
)
```
## vLLM integration
### Serve HQQ models with vLLM
```python
from vllm import LLM, SamplingParams
# Load HQQ-quantized model
llm = LLM(
model="mobiuslabsgmbh/Llama-3.1-8B-HQQ-4bit",
quantization="hqq",
dtype="float16"
)
# Generate
sampling_params = SamplingParams(temperature=0.7, max_tokens=100)
outputs = llm.generate(["What is machine learning?"], sampling_params)
```
### vLLM with custom HQQ config
```python
from vllm import LLM
llm = LLM(
model="meta-llama/Llama-3.1-8B",
quantization="hqq",
quantization_config={
"nbits": 4,
"group_size": 64
}
)
```
## PEFT/LoRA fine-tuning
### Fine-tune quantized models
```python
from transformers import AutoModelForCausalLM, HqqConfig
from peft import LoraConfig, get_peft_model
# Load quantized model
quant_config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=quant_config,
device_map="auto"
)
# Apply LoRA
lora_config = LoraConfig(
r=16,
lora_alpha=32,
target_modules=["q_proj", "k_proj", "v_proj", "o_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
# Train normally with Trainer or custom loop
```
### QLoRA-style training
```python
from transformers import TrainingArguments, Trainer
training_args = TrainingArguments(
output_dir="./hqq-lora-output",
per_device_train_batch_size=4,
gradient_accumulation_steps=4,
learning_rate=2e-4,
num_train_epochs=3,
fp16=True,
logging_steps=10,
save_strategy="epoch"
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator
)
trainer.train()
```
## Quantization workflows
### Workflow 1: Quick model compression
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, HqqConfig
# 1. Configure quantization
config = HqqConfig(nbits=4, group_size=64)
# 2. Load and quantize (no calibration needed!)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
# 3. Verify quality
prompt = "The capital of France is"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0]))
# 4. Save
model.save_pretrained("./llama-8b-hqq")
tokenizer.save_pretrained("./llama-8b-hqq")
```
### Workflow 2: Optimize for inference speed
```python
from hqq.core.quantize import HQQLinear
from transformers import AutoModelForCausalLM, HqqConfig
# 1. Quantize with optimal backend
config = HqqConfig(nbits=4, group_size=64)
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="auto"
)
# 2. Set fast backend
HQQLinear.set_backend("marlin") # or "torchao_int4"
# 3. Compile for additional speedup
import torch
model = torch.compile(model)
# 4. Benchmark
import time
inputs = tokenizer("Hello", return_tensors="pt").to(model.device)
start = time.time()
for _ in range(10):
model.generate(**inputs, max_new_tokens=100)
print(f"Avg time: {(time.time() - start) / 10:.2f}s")
```
## Best practices
1. **Start with 4-bit**: Best quality/size tradeoff for most models
2. **Use group_size=64**: Good balance; smaller for extreme quantization
3. **Choose backend wisely**: Marlin for 4-bit Ampere+, TorchAO for flexibility
4. **Verify quality**: Always test generation quality after quantization
5. **Mixed precision**: Keep attention at higher precision, compress MLP more
6. **PEFT training**: Use LoRA r=16-32 for good fine-tuning results
## Common issues
**Out of memory during quantization:**
```python
# Quantize layer-by-layer
from hqq.models.hf.base import AutoHQQHFModel
model = AutoHQQHFModel.from_pretrained(
"meta-llama/Llama-3.1-8B",
quantization_config=config,
device_map="sequential" # Load layers sequentially
)
```
**Slow inference:**
```python
# Switch to optimized backend
from hqq.core.quantize import HQQLinear
HQQLinear.set_backend("marlin") # Requires Ampere+ GPU
# Or compile
model = torch.compile(model, mode="reduce-overhead")
```
**Poor quality at 2-bit:**
```python
# Use smaller group size
config = BaseQuantizeConfig(
nbits=2,
group_size=16, # Smaller groups help at low bits
axis=1
)
```
## References
- **[Advanced Usage](references/advanced-usage.md)** - Custom backends, mixed precision, optimization
- **[Troubleshooting](references/troubleshooting.md)** - Common issues, debugging, benchmarks
## Resources
- **Repository**: https://github.com/mobiusml/hqq
- **Paper**: Half-Quadratic Quantization
- **HuggingFace Models**: https://huggingface.co/mobiuslabsgmbh
- **Version**: 0.2.0+
- **License**: Apache 2.0
This skill implements Half-Quadratic Quantization (HQQ) for LLM weights, enabling calibration-free quantization down to 1/2/3/4/8 bits. It focuses on fast, production-ready workflows with multiple optimized backends and native integrations for HuggingFace Transformers and vLLM. Use it to shrink models quickly while retaining usable generation quality, or to enable LoRA/PEFT fine-tuning on quantized weights.
HQQ replaces standard linear layers with HQQLinear layers that store quantized weight matrices, scale factors, and zero points. Quantization is performed without calibration data by optimizing per-group quantizers (configurable nbits and group_size) and supports mixed-precision layer configs. Runtime performance is accelerated via pluggable backends (PyTorch, TorchAO, Marlin, BitBlas, etc.), and the library exposes APIs to load, quantize, save, and serve models with HuggingFace or vLLM.
Do I need calibration data to use HQQ?
No. HQQ is designed to quantize weights without any calibration dataset, enabling instant quantization of pretrained models.
Which precision should I choose first?
Begin with 4-bit and group_size=64 for the best tradeoff between quality and compression. Move to 2-bit or 1-bit only after validating quality and using smaller group sizes.