home / skills / orchestra-research / ai-research-skills / dspy
This skill helps you build complex AI systems with declarative LM programming, automatic prompt optimization and modular RAG pipelines for reliable outputs.
npx playbooks add skill orchestra-research/ai-research-skills --skill dspyReview the files below or copy the command above to add this skill to your agents.
---
name: dspy
description: Build complex AI systems with declarative programming, optimize prompts automatically, create modular RAG systems and agents with DSPy - Stanford NLP's framework for systematic LM programming
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Prompt Engineering, DSPy, Declarative Programming, RAG, Agents, Prompt Optimization, LM Programming, Stanford NLP, Automatic Optimization, Modular AI]
dependencies: [dspy, openai, anthropic]
---
# DSPy: Declarative Language Model Programming
## When to Use This Skill
Use DSPy when you need to:
- **Build complex AI systems** with multiple components and workflows
- **Program LMs declaratively** instead of manual prompt engineering
- **Optimize prompts automatically** using data-driven methods
- **Create modular AI pipelines** that are maintainable and portable
- **Improve model outputs systematically** with optimizers
- **Build RAG systems, agents, or classifiers** with better reliability
**GitHub Stars**: 22,000+ | **Created By**: Stanford NLP
## Installation
```bash
# Stable release
pip install dspy
# Latest development version
pip install git+https://github.com/stanfordnlp/dspy.git
# With specific LM providers
pip install dspy[openai] # OpenAI
pip install dspy[anthropic] # Anthropic Claude
pip install dspy[all] # All providers
```
## Quick Start
### Basic Example: Question Answering
```python
import dspy
# Configure your language model
lm = dspy.Claude(model="claude-sonnet-4-5-20250929")
dspy.settings.configure(lm=lm)
# Define a signature (input → output)
class QA(dspy.Signature):
"""Answer questions with short factual answers."""
question = dspy.InputField()
answer = dspy.OutputField(desc="often between 1 and 5 words")
# Create a module
qa = dspy.Predict(QA)
# Use it
response = qa(question="What is the capital of France?")
print(response.answer) # "Paris"
```
### Chain of Thought Reasoning
```python
import dspy
lm = dspy.Claude(model="claude-sonnet-4-5-20250929")
dspy.settings.configure(lm=lm)
# Use ChainOfThought for better reasoning
class MathProblem(dspy.Signature):
"""Solve math word problems."""
problem = dspy.InputField()
answer = dspy.OutputField(desc="numerical answer")
# ChainOfThought generates reasoning steps automatically
cot = dspy.ChainOfThought(MathProblem)
response = cot(problem="If John has 5 apples and gives 2 to Mary, how many does he have?")
print(response.rationale) # Shows reasoning steps
print(response.answer) # "3"
```
## Core Concepts
### 1. Signatures
Signatures define the structure of your AI task (inputs → outputs):
```python
# Inline signature (simple)
qa = dspy.Predict("question -> answer")
# Class signature (detailed)
class Summarize(dspy.Signature):
"""Summarize text into key points."""
text = dspy.InputField()
summary = dspy.OutputField(desc="bullet points, 3-5 items")
summarizer = dspy.ChainOfThought(Summarize)
```
**When to use each:**
- **Inline**: Quick prototyping, simple tasks
- **Class**: Complex tasks, type hints, better documentation
### 2. Modules
Modules are reusable components that transform inputs to outputs:
#### dspy.Predict
Basic prediction module:
```python
predictor = dspy.Predict("context, question -> answer")
result = predictor(context="Paris is the capital of France",
question="What is the capital?")
```
#### dspy.ChainOfThought
Generates reasoning steps before answering:
```python
cot = dspy.ChainOfThought("question -> answer")
result = cot(question="Why is the sky blue?")
print(result.rationale) # Reasoning steps
print(result.answer) # Final answer
```
#### dspy.ReAct
Agent-like reasoning with tools:
```python
from dspy.predict import ReAct
class SearchQA(dspy.Signature):
"""Answer questions using search."""
question = dspy.InputField()
answer = dspy.OutputField()
def search_tool(query: str) -> str:
"""Search Wikipedia."""
# Your search implementation
return results
react = ReAct(SearchQA, tools=[search_tool])
result = react(question="When was Python created?")
```
#### dspy.ProgramOfThought
Generates and executes code for reasoning:
```python
pot = dspy.ProgramOfThought("question -> answer")
result = pot(question="What is 15% of 240?")
# Generates: answer = 240 * 0.15
```
### 3. Optimizers
Optimizers improve your modules automatically using training data:
#### BootstrapFewShot
Learns from examples:
```python
from dspy.teleprompt import BootstrapFewShot
# Training data
trainset = [
dspy.Example(question="What is 2+2?", answer="4").with_inputs("question"),
dspy.Example(question="What is 3+5?", answer="8").with_inputs("question"),
]
# Define metric
def validate_answer(example, pred, trace=None):
return example.answer == pred.answer
# Optimize
optimizer = BootstrapFewShot(metric=validate_answer, max_bootstrapped_demos=3)
optimized_qa = optimizer.compile(qa, trainset=trainset)
# Now optimized_qa performs better!
```
#### MIPRO (Most Important Prompt Optimization)
Iteratively improves prompts:
```python
from dspy.teleprompt import MIPRO
optimizer = MIPRO(
metric=validate_answer,
num_candidates=10,
init_temperature=1.0
)
optimized_cot = optimizer.compile(
cot,
trainset=trainset,
num_trials=100
)
```
#### BootstrapFinetune
Creates datasets for model fine-tuning:
```python
from dspy.teleprompt import BootstrapFinetune
optimizer = BootstrapFinetune(metric=validate_answer)
optimized_module = optimizer.compile(qa, trainset=trainset)
# Exports training data for fine-tuning
```
### 4. Building Complex Systems
#### Multi-Stage Pipeline
```python
import dspy
class MultiHopQA(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve(k=3)
self.generate_query = dspy.ChainOfThought("question -> search_query")
self.generate_answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
# Stage 1: Generate search query
search_query = self.generate_query(question=question).search_query
# Stage 2: Retrieve context
passages = self.retrieve(search_query).passages
context = "\n".join(passages)
# Stage 3: Generate answer
answer = self.generate_answer(context=context, question=question).answer
return dspy.Prediction(answer=answer, context=context)
# Use the pipeline
qa_system = MultiHopQA()
result = qa_system(question="Who wrote the book that inspired the movie Blade Runner?")
```
#### RAG System with Optimization
```python
import dspy
from dspy.retrieve.chromadb_rm import ChromadbRM
# Configure retriever
retriever = ChromadbRM(
collection_name="documents",
persist_directory="./chroma_db"
)
class RAG(dspy.Module):
def __init__(self, num_passages=3):
super().__init__()
self.retrieve = dspy.Retrieve(k=num_passages)
self.generate = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
context = self.retrieve(question).passages
return self.generate(context=context, question=question)
# Create and optimize
rag = RAG()
# Optimize with training data
from dspy.teleprompt import BootstrapFewShot
optimizer = BootstrapFewShot(metric=validate_answer)
optimized_rag = optimizer.compile(rag, trainset=trainset)
```
## LM Provider Configuration
### Anthropic Claude
```python
import dspy
lm = dspy.Claude(
model="claude-sonnet-4-5-20250929",
api_key="your-api-key", # Or set ANTHROPIC_API_KEY env var
max_tokens=1000,
temperature=0.7
)
dspy.settings.configure(lm=lm)
```
### OpenAI
```python
lm = dspy.OpenAI(
model="gpt-4",
api_key="your-api-key",
max_tokens=1000
)
dspy.settings.configure(lm=lm)
```
### Local Models (Ollama)
```python
lm = dspy.OllamaLocal(
model="llama3.1",
base_url="http://localhost:11434"
)
dspy.settings.configure(lm=lm)
```
### Multiple Models
```python
# Different models for different tasks
cheap_lm = dspy.OpenAI(model="gpt-3.5-turbo")
strong_lm = dspy.Claude(model="claude-sonnet-4-5-20250929")
# Use cheap model for retrieval, strong model for reasoning
with dspy.settings.context(lm=cheap_lm):
context = retriever(question)
with dspy.settings.context(lm=strong_lm):
answer = generator(context=context, question=question)
```
## Common Patterns
### Pattern 1: Structured Output
```python
from pydantic import BaseModel, Field
class PersonInfo(BaseModel):
name: str = Field(description="Full name")
age: int = Field(description="Age in years")
occupation: str = Field(description="Current job")
class ExtractPerson(dspy.Signature):
"""Extract person information from text."""
text = dspy.InputField()
person: PersonInfo = dspy.OutputField()
extractor = dspy.TypedPredictor(ExtractPerson)
result = extractor(text="John Doe is a 35-year-old software engineer.")
print(result.person.name) # "John Doe"
print(result.person.age) # 35
```
### Pattern 2: Assertion-Driven Optimization
```python
import dspy
from dspy.primitives.assertions import assert_transform_module, backtrack_handler
class MathQA(dspy.Module):
def __init__(self):
super().__init__()
self.solve = dspy.ChainOfThought("problem -> solution: float")
def forward(self, problem):
solution = self.solve(problem=problem).solution
# Assert solution is numeric
dspy.Assert(
isinstance(float(solution), float),
"Solution must be a number",
backtrack=backtrack_handler
)
return dspy.Prediction(solution=solution)
```
### Pattern 3: Self-Consistency
```python
import dspy
from collections import Counter
class ConsistentQA(dspy.Module):
def __init__(self, num_samples=5):
super().__init__()
self.qa = dspy.ChainOfThought("question -> answer")
self.num_samples = num_samples
def forward(self, question):
# Generate multiple answers
answers = []
for _ in range(self.num_samples):
result = self.qa(question=question)
answers.append(result.answer)
# Return most common answer
most_common = Counter(answers).most_common(1)[0][0]
return dspy.Prediction(answer=most_common)
```
### Pattern 4: Retrieval with Reranking
```python
class RerankedRAG(dspy.Module):
def __init__(self):
super().__init__()
self.retrieve = dspy.Retrieve(k=10)
self.rerank = dspy.Predict("question, passage -> relevance_score: float")
self.answer = dspy.ChainOfThought("context, question -> answer")
def forward(self, question):
# Retrieve candidates
passages = self.retrieve(question).passages
# Rerank passages
scored = []
for passage in passages:
score = float(self.rerank(question=question, passage=passage).relevance_score)
scored.append((score, passage))
# Take top 3
top_passages = [p for _, p in sorted(scored, reverse=True)[:3]]
context = "\n\n".join(top_passages)
# Generate answer
return self.answer(context=context, question=question)
```
## Evaluation and Metrics
### Custom Metrics
```python
def exact_match(example, pred, trace=None):
"""Exact match metric."""
return example.answer.lower() == pred.answer.lower()
def f1_score(example, pred, trace=None):
"""F1 score for text overlap."""
pred_tokens = set(pred.answer.lower().split())
gold_tokens = set(example.answer.lower().split())
if not pred_tokens:
return 0.0
precision = len(pred_tokens & gold_tokens) / len(pred_tokens)
recall = len(pred_tokens & gold_tokens) / len(gold_tokens)
if precision + recall == 0:
return 0.0
return 2 * (precision * recall) / (precision + recall)
```
### Evaluation
```python
from dspy.evaluate import Evaluate
# Create evaluator
evaluator = Evaluate(
devset=testset,
metric=exact_match,
num_threads=4,
display_progress=True
)
# Evaluate model
score = evaluator(qa_system)
print(f"Accuracy: {score}")
# Compare optimized vs unoptimized
score_before = evaluator(qa)
score_after = evaluator(optimized_qa)
print(f"Improvement: {score_after - score_before:.2%}")
```
## Best Practices
### 1. Start Simple, Iterate
```python
# Start with Predict
qa = dspy.Predict("question -> answer")
# Add reasoning if needed
qa = dspy.ChainOfThought("question -> answer")
# Add optimization when you have data
optimized_qa = optimizer.compile(qa, trainset=data)
```
### 2. Use Descriptive Signatures
```python
# ❌ Bad: Vague
class Task(dspy.Signature):
input = dspy.InputField()
output = dspy.OutputField()
# ✅ Good: Descriptive
class SummarizeArticle(dspy.Signature):
"""Summarize news articles into 3-5 key points."""
article = dspy.InputField(desc="full article text")
summary = dspy.OutputField(desc="bullet points, 3-5 items")
```
### 3. Optimize with Representative Data
```python
# Create diverse training examples
trainset = [
dspy.Example(question="factual", answer="...).with_inputs("question"),
dspy.Example(question="reasoning", answer="...").with_inputs("question"),
dspy.Example(question="calculation", answer="...").with_inputs("question"),
]
# Use validation set for metric
def metric(example, pred, trace=None):
return example.answer in pred.answer
```
### 4. Save and Load Optimized Models
```python
# Save
optimized_qa.save("models/qa_v1.json")
# Load
loaded_qa = dspy.ChainOfThought("question -> answer")
loaded_qa.load("models/qa_v1.json")
```
### 5. Monitor and Debug
```python
# Enable tracing
dspy.settings.configure(lm=lm, trace=[])
# Run prediction
result = qa(question="...")
# Inspect trace
for call in dspy.settings.trace:
print(f"Prompt: {call['prompt']}")
print(f"Response: {call['response']}")
```
## Comparison to Other Approaches
| Feature | Manual Prompting | LangChain | DSPy |
|---------|-----------------|-----------|------|
| Prompt Engineering | Manual | Manual | Automatic |
| Optimization | Trial & error | None | Data-driven |
| Modularity | Low | Medium | High |
| Type Safety | No | Limited | Yes (Signatures) |
| Portability | Low | Medium | High |
| Learning Curve | Low | Medium | Medium-High |
**When to choose DSPy:**
- You have training data or can generate it
- You need systematic prompt improvement
- You're building complex multi-stage systems
- You want to optimize across different LMs
**When to choose alternatives:**
- Quick prototypes (manual prompting)
- Simple chains with existing tools (LangChain)
- Custom optimization logic needed
## Resources
- **Documentation**: https://dspy.ai
- **GitHub**: https://github.com/stanfordnlp/dspy (22k+ stars)
- **Discord**: https://discord.gg/XCGy2WDCQB
- **Twitter**: @DSPyOSS
- **Paper**: "DSPy: Compiling Declarative Language Model Calls into Self-Improving Pipelines"
## See Also
- `references/modules.md` - Detailed module guide (Predict, ChainOfThought, ReAct, ProgramOfThought)
- `references/optimizers.md` - Optimization algorithms (BootstrapFewShot, MIPRO, BootstrapFinetune)
- `references/examples.md` - Real-world examples (RAG, agents, classifiers)
This skill packages DSPy, a declarative framework from Stanford NLP for building and optimizing complex language-model systems. It helps you define structured tasks, compose modular pipelines (RAG, agents, multi-stage flows), and automatically optimize prompts and modules using data-driven optimizers. Use it to move from brittle prompt engineering to reproducible, testable LM programs.
DSPy exposes Signatures, Modules, and Optimizers so you can declare inputs→outputs, compose components, and run modules like Predict, ChainOfThought, ReAct, or custom RAG pipelines. Optimizers such as BootstrapFewShot, MIPRO, and BootstrapFinetune evaluate modules on training examples and search for better prompts, few-shot demos, or finetune datasets. You configure LM providers (Anthropic, OpenAI, local models) and evaluate with custom metrics to iterate toward reliable behavior.
Which LM providers does DSPy support?
DSPy supports multiple providers including Anthropic Claude, OpenAI, and local models (Ollama), and lets you switch models per component via settings.context.
When should I use optimizers vs finetuning?
Use optimizers (MIPRO, BootstrapFewShot) to quickly improve prompts and demo selection when you have limited data; export datasets with BootstrapFinetune when you want to create a finetuning corpus for model retraining.