home / skills / orchestra-research / ai-research-skills / audiocraft

audiocraft skill

/18-multimodal/audiocraft

This skill helps you generate music or sounds from text descriptions using AudioCraft, enabling melody-conditioned and stereo audio output.

npx playbooks add skill orchestra-research/ai-research-skills --skill audiocraft

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
15.9 KB
---
name: audiocraft-audio-generation
description: PyTorch library for audio generation including text-to-music (MusicGen) and text-to-sound (AudioGen). Use when you need to generate music from text descriptions, create sound effects, or perform melody-conditioned music generation.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Multimodal, Audio Generation, Text-to-Music, Text-to-Audio, MusicGen]
dependencies: [audiocraft, torch>=2.0.0, transformers>=4.30.0]
---

# AudioCraft: Audio Generation

Comprehensive guide to using Meta's AudioCraft for text-to-music and text-to-audio generation with MusicGen, AudioGen, and EnCodec.

## When to use AudioCraft

**Use AudioCraft when:**
- Need to generate music from text descriptions
- Creating sound effects and environmental audio
- Building music generation applications
- Need melody-conditioned music generation
- Want stereo audio output
- Require controllable music generation with style transfer

**Key features:**
- **MusicGen**: Text-to-music generation with melody conditioning
- **AudioGen**: Text-to-sound effects generation
- **EnCodec**: High-fidelity neural audio codec
- **Multiple model sizes**: Small (300M) to Large (3.3B)
- **Stereo support**: Full stereo audio generation
- **Style conditioning**: MusicGen-Style for reference-based generation

**Use alternatives instead:**
- **Stable Audio**: For longer commercial music generation
- **Bark**: For text-to-speech with music/sound effects
- **Riffusion**: For spectogram-based music generation
- **OpenAI Jukebox**: For raw audio generation with lyrics

## Quick start

### Installation

```bash
# From PyPI
pip install audiocraft

# From GitHub (latest)
pip install git+https://github.com/facebookresearch/audiocraft.git

# Or use HuggingFace Transformers
pip install transformers torch torchaudio
```

### Basic text-to-music (AudioCraft)

```python
import torchaudio
from audiocraft.models import MusicGen

# Load model
model = MusicGen.get_pretrained('facebook/musicgen-small')

# Set generation parameters
model.set_generation_params(
    duration=8,  # seconds
    top_k=250,
    temperature=1.0
)

# Generate from text
descriptions = ["happy upbeat electronic dance music with synths"]
wav = model.generate(descriptions)

# Save audio
torchaudio.save("output.wav", wav[0].cpu(), sample_rate=32000)
```

### Using HuggingFace Transformers

```python
from transformers import AutoProcessor, MusicgenForConditionalGeneration
import scipy

# Load model and processor
processor = AutoProcessor.from_pretrained("facebook/musicgen-small")
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-small")
model.to("cuda")

# Generate music
inputs = processor(
    text=["80s pop track with bassy drums and synth"],
    padding=True,
    return_tensors="pt"
).to("cuda")

audio_values = model.generate(
    **inputs,
    do_sample=True,
    guidance_scale=3,
    max_new_tokens=256
)

# Save
sampling_rate = model.config.audio_encoder.sampling_rate
scipy.io.wavfile.write("output.wav", rate=sampling_rate, data=audio_values[0, 0].cpu().numpy())
```

### Text-to-sound with AudioGen

```python
from audiocraft.models import AudioGen

# Load AudioGen
model = AudioGen.get_pretrained('facebook/audiogen-medium')

model.set_generation_params(duration=5)

# Generate sound effects
descriptions = ["dog barking in a park with birds chirping"]
wav = model.generate(descriptions)

torchaudio.save("sound.wav", wav[0].cpu(), sample_rate=16000)
```

## Core concepts

### Architecture overview

```
AudioCraft Architecture:
┌──────────────────────────────────────────────────────────────┐
│                    Text Encoder (T5)                          │
│                         │                                     │
│                    Text Embeddings                            │
└────────────────────────┬─────────────────────────────────────┘
                         │
┌────────────────────────▼─────────────────────────────────────┐
│              Transformer Decoder (LM)                         │
│     Auto-regressively generates audio tokens                  │
│     Using efficient token interleaving patterns               │
└────────────────────────┬─────────────────────────────────────┘
                         │
┌────────────────────────▼─────────────────────────────────────┐
│                EnCodec Audio Decoder                          │
│        Converts tokens back to audio waveform                 │
└──────────────────────────────────────────────────────────────┘
```

### Model variants

| Model | Size | Description | Use Case |
|-------|------|-------------|----------|
| `musicgen-small` | 300M | Text-to-music | Quick generation |
| `musicgen-medium` | 1.5B | Text-to-music | Balanced |
| `musicgen-large` | 3.3B | Text-to-music | Best quality |
| `musicgen-melody` | 1.5B | Text + melody | Melody conditioning |
| `musicgen-melody-large` | 3.3B | Text + melody | Best melody |
| `musicgen-stereo-*` | Varies | Stereo output | Stereo generation |
| `musicgen-style` | 1.5B | Style transfer | Reference-based |
| `audiogen-medium` | 1.5B | Text-to-sound | Sound effects |

### Generation parameters

| Parameter | Default | Description |
|-----------|---------|-------------|
| `duration` | 8.0 | Length in seconds (1-120) |
| `top_k` | 250 | Top-k sampling |
| `top_p` | 0.0 | Nucleus sampling (0 = disabled) |
| `temperature` | 1.0 | Sampling temperature |
| `cfg_coef` | 3.0 | Classifier-free guidance |

## MusicGen usage

### Text-to-music generation

```python
from audiocraft.models import MusicGen
import torchaudio

model = MusicGen.get_pretrained('facebook/musicgen-medium')

# Configure generation
model.set_generation_params(
    duration=30,          # Up to 30 seconds
    top_k=250,            # Sampling diversity
    top_p=0.0,            # 0 = use top_k only
    temperature=1.0,      # Creativity (higher = more varied)
    cfg_coef=3.0          # Text adherence (higher = stricter)
)

# Generate multiple samples
descriptions = [
    "epic orchestral soundtrack with strings and brass",
    "chill lo-fi hip hop beat with jazzy piano",
    "energetic rock song with electric guitar"
]

# Generate (returns [batch, channels, samples])
wav = model.generate(descriptions)

# Save each
for i, audio in enumerate(wav):
    torchaudio.save(f"music_{i}.wav", audio.cpu(), sample_rate=32000)
```

### Melody-conditioned generation

```python
from audiocraft.models import MusicGen
import torchaudio

# Load melody model
model = MusicGen.get_pretrained('facebook/musicgen-melody')
model.set_generation_params(duration=30)

# Load melody audio
melody, sr = torchaudio.load("melody.wav")

# Generate with melody conditioning
descriptions = ["acoustic guitar folk song"]
wav = model.generate_with_chroma(descriptions, melody, sr)

torchaudio.save("melody_conditioned.wav", wav[0].cpu(), sample_rate=32000)
```

### Stereo generation

```python
from audiocraft.models import MusicGen

# Load stereo model
model = MusicGen.get_pretrained('facebook/musicgen-stereo-medium')
model.set_generation_params(duration=15)

descriptions = ["ambient electronic music with wide stereo panning"]
wav = model.generate(descriptions)

# wav shape: [batch, 2, samples] for stereo
print(f"Stereo shape: {wav.shape}")  # [1, 2, 480000]
torchaudio.save("stereo.wav", wav[0].cpu(), sample_rate=32000)
```

### Audio continuation

```python
from transformers import AutoProcessor, MusicgenForConditionalGeneration

processor = AutoProcessor.from_pretrained("facebook/musicgen-medium")
model = MusicgenForConditionalGeneration.from_pretrained("facebook/musicgen-medium")

# Load audio to continue
import torchaudio
audio, sr = torchaudio.load("intro.wav")

# Process with text and audio
inputs = processor(
    audio=audio.squeeze().numpy(),
    sampling_rate=sr,
    text=["continue with a epic chorus"],
    padding=True,
    return_tensors="pt"
)

# Generate continuation
audio_values = model.generate(**inputs, do_sample=True, guidance_scale=3, max_new_tokens=512)
```

## MusicGen-Style usage

### Style-conditioned generation

```python
from audiocraft.models import MusicGen

# Load style model
model = MusicGen.get_pretrained('facebook/musicgen-style')

# Configure generation with style
model.set_generation_params(
    duration=30,
    cfg_coef=3.0,
    cfg_coef_beta=5.0  # Style influence
)

# Configure style conditioner
model.set_style_conditioner_params(
    eval_q=3,          # RVQ quantizers (1-6)
    excerpt_length=3.0  # Style excerpt length
)

# Load style reference
style_audio, sr = torchaudio.load("reference_style.wav")

# Generate with text + style
descriptions = ["upbeat dance track"]
wav = model.generate_with_style(descriptions, style_audio, sr)
```

### Style-only generation (no text)

```python
# Generate matching style without text prompt
model.set_generation_params(
    duration=30,
    cfg_coef=3.0,
    cfg_coef_beta=None  # Disable double CFG for style-only
)

wav = model.generate_with_style([None], style_audio, sr)
```

## AudioGen usage

### Sound effect generation

```python
from audiocraft.models import AudioGen
import torchaudio

model = AudioGen.get_pretrained('facebook/audiogen-medium')
model.set_generation_params(duration=10)

# Generate various sounds
descriptions = [
    "thunderstorm with heavy rain and lightning",
    "busy city traffic with car horns",
    "ocean waves crashing on rocks",
    "crackling campfire in forest"
]

wav = model.generate(descriptions)

for i, audio in enumerate(wav):
    torchaudio.save(f"sound_{i}.wav", audio.cpu(), sample_rate=16000)
```

## EnCodec usage

### Audio compression

```python
from audiocraft.models import CompressionModel
import torch
import torchaudio

# Load EnCodec
model = CompressionModel.get_pretrained('facebook/encodec_32khz')

# Load audio
wav, sr = torchaudio.load("audio.wav")

# Ensure correct sample rate
if sr != 32000:
    resampler = torchaudio.transforms.Resample(sr, 32000)
    wav = resampler(wav)

# Encode to tokens
with torch.no_grad():
    encoded = model.encode(wav.unsqueeze(0))
    codes = encoded[0]  # Audio codes

# Decode back to audio
with torch.no_grad():
    decoded = model.decode(codes)

torchaudio.save("reconstructed.wav", decoded[0].cpu(), sample_rate=32000)
```

## Common workflows

### Workflow 1: Music generation pipeline

```python
import torch
import torchaudio
from audiocraft.models import MusicGen

class MusicGenerator:
    def __init__(self, model_name="facebook/musicgen-medium"):
        self.model = MusicGen.get_pretrained(model_name)
        self.sample_rate = 32000

    def generate(self, prompt, duration=30, temperature=1.0, cfg=3.0):
        self.model.set_generation_params(
            duration=duration,
            top_k=250,
            temperature=temperature,
            cfg_coef=cfg
        )

        with torch.no_grad():
            wav = self.model.generate([prompt])

        return wav[0].cpu()

    def generate_batch(self, prompts, duration=30):
        self.model.set_generation_params(duration=duration)

        with torch.no_grad():
            wav = self.model.generate(prompts)

        return wav.cpu()

    def save(self, audio, path):
        torchaudio.save(path, audio, sample_rate=self.sample_rate)

# Usage
generator = MusicGenerator()
audio = generator.generate(
    "epic cinematic orchestral music",
    duration=30,
    temperature=1.0
)
generator.save(audio, "epic_music.wav")
```

### Workflow 2: Sound design batch processing

```python
import json
from pathlib import Path
from audiocraft.models import AudioGen
import torchaudio

def batch_generate_sounds(sound_specs, output_dir):
    """
    Generate multiple sounds from specifications.

    Args:
        sound_specs: list of {"name": str, "description": str, "duration": float}
        output_dir: output directory path
    """
    model = AudioGen.get_pretrained('facebook/audiogen-medium')
    output_dir = Path(output_dir)
    output_dir.mkdir(exist_ok=True)

    results = []

    for spec in sound_specs:
        model.set_generation_params(duration=spec.get("duration", 5))

        wav = model.generate([spec["description"]])

        output_path = output_dir / f"{spec['name']}.wav"
        torchaudio.save(str(output_path), wav[0].cpu(), sample_rate=16000)

        results.append({
            "name": spec["name"],
            "path": str(output_path),
            "description": spec["description"]
        })

    return results

# Usage
sounds = [
    {"name": "explosion", "description": "massive explosion with debris", "duration": 3},
    {"name": "footsteps", "description": "footsteps on wooden floor", "duration": 5},
    {"name": "door", "description": "wooden door creaking and closing", "duration": 2}
]

results = batch_generate_sounds(sounds, "sound_effects/")
```

### Workflow 3: Gradio demo

```python
import gradio as gr
import torch
import torchaudio
from audiocraft.models import MusicGen

model = MusicGen.get_pretrained('facebook/musicgen-small')

def generate_music(prompt, duration, temperature, cfg_coef):
    model.set_generation_params(
        duration=duration,
        temperature=temperature,
        cfg_coef=cfg_coef
    )

    with torch.no_grad():
        wav = model.generate([prompt])

    # Save to temp file
    path = "temp_output.wav"
    torchaudio.save(path, wav[0].cpu(), sample_rate=32000)
    return path

demo = gr.Interface(
    fn=generate_music,
    inputs=[
        gr.Textbox(label="Music Description", placeholder="upbeat electronic dance music"),
        gr.Slider(1, 30, value=8, label="Duration (seconds)"),
        gr.Slider(0.5, 2.0, value=1.0, label="Temperature"),
        gr.Slider(1.0, 10.0, value=3.0, label="CFG Coefficient")
    ],
    outputs=gr.Audio(label="Generated Music"),
    title="MusicGen Demo"
)

demo.launch()
```

## Performance optimization

### Memory optimization

```python
# Use smaller model
model = MusicGen.get_pretrained('facebook/musicgen-small')

# Clear cache between generations
torch.cuda.empty_cache()

# Generate shorter durations
model.set_generation_params(duration=10)  # Instead of 30

# Use half precision
model = model.half()
```

### Batch processing efficiency

```python
# Process multiple prompts at once (more efficient)
descriptions = ["prompt1", "prompt2", "prompt3", "prompt4"]
wav = model.generate(descriptions)  # Single batch

# Instead of
for desc in descriptions:
    wav = model.generate([desc])  # Multiple batches (slower)
```

### GPU memory requirements

| Model | FP32 VRAM | FP16 VRAM |
|-------|-----------|-----------|
| musicgen-small | ~4GB | ~2GB |
| musicgen-medium | ~8GB | ~4GB |
| musicgen-large | ~16GB | ~8GB |

## Common issues

| Issue | Solution |
|-------|----------|
| CUDA OOM | Use smaller model, reduce duration |
| Poor quality | Increase cfg_coef, better prompts |
| Generation too short | Check max duration setting |
| Audio artifacts | Try different temperature |
| Stereo not working | Use stereo model variant |

## References

- **[Advanced Usage](references/advanced-usage.md)** - Training, fine-tuning, deployment
- **[Troubleshooting](references/troubleshooting.md)** - Common issues and solutions

## Resources

- **GitHub**: https://github.com/facebookresearch/audiocraft
- **Paper (MusicGen)**: https://arxiv.org/abs/2306.05284
- **Paper (AudioGen)**: https://arxiv.org/abs/2209.15352
- **HuggingFace**: https://huggingface.co/facebook/musicgen-small
- **Demo**: https://huggingface.co/spaces/facebook/MusicGen

Overview

This skill provides a PyTorch-based audio generation toolkit for creating music and sound from text using MusicGen and AudioGen, plus EnCodec for high-fidelity codec operations. It supports melody-conditioned generation, style transfer, stereo output, and multiple model sizes for tradeoffs between speed and quality. Use it to prototype music apps, generate sound effects, or integrate controllable audio synthesis into pipelines.

How this skill works

The models encode text (T5) to embeddings that a transformer decoder autoregressively converts into discrete audio tokens. EnCodec decodes tokens back to waveforms with configurable sampling rates and stereo support. Generation parameters (duration, temperature, top_k, cfg_coef) control creativity and adherence to prompts; specialized models add melody conditioning or style reference conditioning.

When to use it

  • Generate music from natural-language prompts (MusicGen).
  • Create short sound effects or environmental sounds (AudioGen).
  • Condition music on an existing melody or reference style.
  • Produce stereo audio or high-fidelity reconstructions with EnCodec.
  • Batch-generate assets for games, films, or demos.

Best practices

  • Choose model size based on resources: small for quick tests, medium/large for better quality.
  • Set duration and sampling rate explicitly to control memory and output length.
  • Use classifier-free guidance (cfg_coef) to balance fidelity to the prompt vs. diversity.
  • Batch prompts to maximize GPU throughput and reduce overhead.
  • Clear CUDA cache and use half precision on limited GPUs to lower memory usage.

Example use cases

  • Build a web demo that turns user text into 8–30s music tracks with adjustable temperature and CFG.
  • Generate libraries of sound effects for games (footsteps, explosions, weather) using AudioGen in batch mode.
  • Create melody-conditioned arrangements by supplying an input melody and a genre prompt to MusicGen-melody.
  • Apply style-transfer: feed a reference clip to MusicGen-style to produce new music matching a target timbre or production style.
  • Compress and reconstruct audio assets using EnCodec to store audio as discrete codes and decode on demand.

FAQ

What sample rates do models use?

MusicGen typically uses 32 kHz; AudioGen common outputs are 16 kHz. Check model.config.audio_encoder.sampling_rate for exact values.

How long can generated clips be?

Durations range up to around 120 seconds depending on model and memory; practical defaults are 8–30s for GPU-constrained setups.

How do I control prompt adherence vs creativity?

Adjust temperature for creativity and cfg_coef (classifier-free guidance) to enforce closeness to the text prompt; higher cfg_coef increases adherence.