home / skills / orchestra-research / ai-research-skills / accelerate
This skill simplifies distributed training with HuggingFace Accelerate, enabling seamless multi-GPU/TPU setups via a four-line integration.
npx playbooks add skill orchestra-research/ai-research-skills --skill accelerateReview the files below or copy the command above to add this skill to your agents.
---
name: huggingface-accelerate
description: Simplest distributed training API. 4 lines to add distributed support to any PyTorch script. Unified API for DeepSpeed/FSDP/Megatron/DDP. Automatic device placement, mixed precision (FP16/BF16/FP8). Interactive config, single launch command. HuggingFace ecosystem standard.
version: 1.0.0
author: Orchestra Research
license: MIT
tags: [Distributed Training, HuggingFace, Accelerate, DeepSpeed, FSDP, Mixed Precision, PyTorch, DDP, Unified API, Simple]
dependencies: [accelerate, torch, transformers]
---
# HuggingFace Accelerate - Unified Distributed Training
## Quick start
Accelerate simplifies distributed training to 4 lines of code.
**Installation**:
```bash
pip install accelerate
```
**Convert PyTorch script** (4 lines):
```python
import torch
+ from accelerate import Accelerator
+ accelerator = Accelerator()
model = torch.nn.Transformer()
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset)
+ model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
optimizer.zero_grad()
loss = model(batch)
- loss.backward()
+ accelerator.backward(loss)
optimizer.step()
```
**Run** (single command):
```bash
accelerate launch train.py
```
## Common workflows
### Workflow 1: From single GPU to multi-GPU
**Original script**:
```python
# train.py
import torch
model = torch.nn.Linear(10, 2).to('cuda')
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
for epoch in range(10):
for batch in dataloader:
batch = batch.to('cuda')
optimizer.zero_grad()
loss = model(batch).mean()
loss.backward()
optimizer.step()
```
**With Accelerate** (4 lines added):
```python
# train.py
import torch
from accelerate import Accelerator # +1
accelerator = Accelerator() # +2
model = torch.nn.Linear(10, 2)
optimizer = torch.optim.Adam(model.parameters())
dataloader = torch.utils.data.DataLoader(dataset, batch_size=32)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader) # +3
for epoch in range(10):
for batch in dataloader:
# No .to('cuda') needed - automatic!
optimizer.zero_grad()
loss = model(batch).mean()
accelerator.backward(loss) # +4
optimizer.step()
```
**Configure** (interactive):
```bash
accelerate config
```
**Questions**:
- Which machine? (single/multi GPU/TPU/CPU)
- How many machines? (1)
- Mixed precision? (no/fp16/bf16/fp8)
- DeepSpeed? (no/yes)
**Launch** (works on any setup):
```bash
# Single GPU
accelerate launch train.py
# Multi-GPU (8 GPUs)
accelerate launch --multi_gpu --num_processes 8 train.py
# Multi-node
accelerate launch --multi_gpu --num_processes 16 \
--num_machines 2 --machine_rank 0 \
--main_process_ip $MASTER_ADDR \
train.py
```
### Workflow 2: Mixed precision training
**Enable FP16/BF16**:
```python
from accelerate import Accelerator
# FP16 (with gradient scaling)
accelerator = Accelerator(mixed_precision='fp16')
# BF16 (no scaling, more stable)
accelerator = Accelerator(mixed_precision='bf16')
# FP8 (H100+)
accelerator = Accelerator(mixed_precision='fp8')
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
# Everything else is automatic!
for batch in dataloader:
with accelerator.autocast(): # Optional, done automatically
loss = model(batch)
accelerator.backward(loss)
```
### Workflow 3: DeepSpeed ZeRO integration
**Enable DeepSpeed ZeRO-2**:
```python
from accelerate import Accelerator
accelerator = Accelerator(
mixed_precision='bf16',
deepspeed_plugin={
"zero_stage": 2, # ZeRO-2
"offload_optimizer": False,
"gradient_accumulation_steps": 4
}
)
# Same code as before!
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
```
**Or via config**:
```bash
accelerate config
# Select: DeepSpeed → ZeRO-2
```
**deepspeed_config.json**:
```json
{
"fp16": {"enabled": false},
"bf16": {"enabled": true},
"zero_optimization": {
"stage": 2,
"offload_optimizer": {"device": "cpu"},
"allgather_bucket_size": 5e8,
"reduce_bucket_size": 5e8
}
}
```
**Launch**:
```bash
accelerate launch --config_file deepspeed_config.json train.py
```
### Workflow 4: FSDP (Fully Sharded Data Parallel)
**Enable FSDP**:
```python
from accelerate import Accelerator, FullyShardedDataParallelPlugin
fsdp_plugin = FullyShardedDataParallelPlugin(
sharding_strategy="FULL_SHARD", # ZeRO-3 equivalent
auto_wrap_policy="TRANSFORMER_AUTO_WRAP",
cpu_offload=False
)
accelerator = Accelerator(
mixed_precision='bf16',
fsdp_plugin=fsdp_plugin
)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
```
**Or via config**:
```bash
accelerate config
# Select: FSDP → Full Shard → No CPU Offload
```
### Workflow 5: Gradient accumulation
**Accumulate gradients**:
```python
from accelerate import Accelerator
accelerator = Accelerator(gradient_accumulation_steps=4)
model, optimizer, dataloader = accelerator.prepare(model, optimizer, dataloader)
for batch in dataloader:
with accelerator.accumulate(model): # Handles accumulation
optimizer.zero_grad()
loss = model(batch)
accelerator.backward(loss)
optimizer.step()
```
**Effective batch size**: `batch_size * num_gpus * gradient_accumulation_steps`
## When to use vs alternatives
**Use Accelerate when**:
- Want simplest distributed training
- Need single script for any hardware
- Use HuggingFace ecosystem
- Want flexibility (DDP/DeepSpeed/FSDP/Megatron)
- Need quick prototyping
**Key advantages**:
- **4 lines**: Minimal code changes
- **Unified API**: Same code for DDP, DeepSpeed, FSDP, Megatron
- **Automatic**: Device placement, mixed precision, sharding
- **Interactive config**: No manual launcher setup
- **Single launch**: Works everywhere
**Use alternatives instead**:
- **PyTorch Lightning**: Need callbacks, high-level abstractions
- **Ray Train**: Multi-node orchestration, hyperparameter tuning
- **DeepSpeed**: Direct API control, advanced features
- **Raw DDP**: Maximum control, minimal abstraction
## Common issues
**Issue: Wrong device placement**
Don't manually move to device:
```python
# WRONG
batch = batch.to('cuda')
# CORRECT
# Accelerate handles it automatically after prepare()
```
**Issue: Gradient accumulation not working**
Use context manager:
```python
# CORRECT
with accelerator.accumulate(model):
optimizer.zero_grad()
accelerator.backward(loss)
optimizer.step()
```
**Issue: Checkpointing in distributed**
Use accelerator methods:
```python
# Save only on main process
if accelerator.is_main_process:
accelerator.save_state('checkpoint/')
# Load on all processes
accelerator.load_state('checkpoint/')
```
**Issue: Different results with FSDP**
Ensure same random seed:
```python
from accelerate.utils import set_seed
set_seed(42)
```
## Advanced topics
**Megatron integration**: See [references/megatron-integration.md](references/megatron-integration.md) for tensor parallelism, pipeline parallelism, and sequence parallelism setup.
**Custom plugins**: See [references/custom-plugins.md](references/custom-plugins.md) for creating custom distributed plugins and advanced configuration.
**Performance tuning**: See [references/performance.md](references/performance.md) for profiling, memory optimization, and best practices.
## Hardware requirements
- **CPU**: Works (slow)
- **Single GPU**: Works
- **Multi-GPU**: DDP (default), DeepSpeed, or FSDP
- **Multi-node**: DDP, DeepSpeed, FSDP, Megatron
- **TPU**: Supported
- **Apple MPS**: Supported
**Launcher requirements**:
- **DDP**: `torch.distributed.run` (built-in)
- **DeepSpeed**: `deepspeed` (pip install deepspeed)
- **FSDP**: PyTorch 1.12+ (built-in)
- **Megatron**: Custom setup
## Resources
- Docs: https://huggingface.co/docs/accelerate
- GitHub: https://github.com/huggingface/accelerate
- Version: 1.11.0+
- Tutorial: "Accelerate your scripts"
- Examples: https://github.com/huggingface/accelerate/tree/main/examples
- Used by: HuggingFace Transformers, TRL, PEFT, all HF libraries
This skill provides a minimal, unified API to add distributed training to any PyTorch script in four lines. It standardizes device placement, mixed precision (FP16/BF16/FP8), and integration with DDP, DeepSpeed, FSDP, and Megatron while exposing an interactive configuration and a single launch command. The result is a consistent workflow across single-GPU, multi-GPU, multi-node, and TPU setups.
Accelerate wraps your model, optimizer, and dataloader with an Accelerator instance and handles device placement, mixed-precision autocasting, gradient scaling, and backward calls. It plugs into multiple backends (native DDP, DeepSpeed ZeRO, FSDP, Megatron) via plugins or config files and exposes helpers for accumulation, checkpointing, and process coordination. Launching is done with a single CLI command that reads the interactive config or a JSON backend config.
Do I still need to call .to('cuda') on tensors and models?
No. After model, optimizer, dataloader = accelerator.prepare(...), Accelerate handles device placement automatically.
How do I enable mixed precision?
Instantiate Accelerator with mixed_precision='fp16'|'bf16'|'fp8' or select the option in accelerate config; autocast and scaling are handled for you.
How do I checkpoint in distributed training?
Use accelerator.save_state('path') on the main process (accelerator.is_main_process) and accelerator.load_state('path') on all processes.