home / skills / microsoft / agent-skills / azure-ai-voicelive-skill
npx playbooks add-skill microsoft/agent-skills --skill azure-ai-voicelive-skill---
name: azure-ai-voicelive
description: Build real-time voice AI applications using Azure AI Voice Live SDK (azure-ai-voicelive). Use this skill when creating Python applications that need real-time bidirectional audio communication with Azure AI, including voice assistants, voice-enabled chatbots, real-time speech-to-speech translation, voice-driven avatars, or any WebSocket-based audio streaming with AI models. Supports Server VAD (Voice Activity Detection), turn-based conversation, function calling, MCP tools, avatar integration, and transcription.
---
# Azure AI Voice Live SDK
Build real-time voice AI applications with bidirectional WebSocket communication.
## Installation
```bash
pip install azure-ai-voicelive aiohttp
```
## Quick Start
```python
import asyncio
from azure.ai.voicelive.aio import connect
from azure.core.credentials import AzureKeyCredential
async def main():
async with connect(
endpoint="https://<region>.api.cognitive.microsoft.com",
credential=AzureKeyCredential("<your-api-key>"),
model="gpt-4o-realtime-preview"
) as conn:
# Update session with instructions
await conn.session.update(session={
"instructions": "You are a helpful assistant.",
"modalities": ["text", "audio"],
"voice": "alloy"
})
# Listen for events
async for event in conn:
print(f"Event: {event.type}")
if event.type == "response.audio_transcript.done":
print(f"Transcript: {event.transcript}")
elif event.type == "response.done":
break
asyncio.run(main())
```
## Core Architecture
### Connection Setup
```python
from azure.ai.voicelive.aio import connect
from azure.core.credentials import AzureKeyCredential
from azure.identity.aio import DefaultAzureCredential
# API Key auth
async with connect(
endpoint="https://<region>.api.cognitive.microsoft.com",
credential=AzureKeyCredential("<key>"),
model="gpt-4o-realtime-preview"
) as conn:
...
# Azure AD auth
async with connect(
endpoint="https://<region>.api.cognitive.microsoft.com",
credential=DefaultAzureCredential(),
model="gpt-4o-realtime-preview",
credential_scopes=["https://cognitiveservices.azure.com/.default"]
) as conn:
...
```
### Connection Resources
The `VoiceLiveConnection` exposes these resources:
| Resource | Purpose | Key Methods |
|----------|---------|-------------|
| `conn.session` | Session configuration | `update(session=...)` |
| `conn.response` | Model responses | `create()`, `cancel()` |
| `conn.input_audio_buffer` | Audio input | `append()`, `commit()`, `clear()` |
| `conn.output_audio_buffer` | Audio output | `clear()` |
| `conn.conversation` | Conversation state | `item.create()`, `item.delete()`, `item.truncate()` |
| `conn.transcription_session` | Transcription config | `update(session=...)` |
## Session Configuration
```python
from azure.ai.voicelive.models import RequestSession, FunctionTool
await conn.session.update(session=RequestSession(
instructions="You are a helpful voice assistant.",
modalities=["text", "audio"],
voice="alloy", # or "echo", "shimmer", "sage", etc.
input_audio_format="pcm16",
output_audio_format="pcm16",
turn_detection={
"type": "server_vad",
"threshold": 0.5,
"prefix_padding_ms": 300,
"silence_duration_ms": 500
},
tools=[
FunctionTool(
type="function",
name="get_weather",
description="Get current weather",
parameters={
"type": "object",
"properties": {
"location": {"type": "string"}
},
"required": ["location"]
}
)
]
))
```
## Audio Streaming
### Send Audio (Base64 PCM16)
```python
import base64
# Read audio chunk (16-bit PCM, 24kHz mono)
audio_chunk = await read_audio_from_microphone()
b64_audio = base64.b64encode(audio_chunk).decode()
await conn.input_audio_buffer.append(audio=b64_audio)
```
### Receive Audio
```python
async for event in conn:
if event.type == "response.audio.delta":
audio_bytes = base64.b64decode(event.delta)
await play_audio(audio_bytes)
elif event.type == "response.audio.done":
print("Audio complete")
```
## Event Handling
```python
async for event in conn:
match event.type:
# Session events
case "session.created":
print(f"Session: {event.session}")
case "session.updated":
print("Session updated")
# Audio input events
case "input_audio_buffer.speech_started":
print(f"Speech started at {event.audio_start_ms}ms")
case "input_audio_buffer.speech_stopped":
print(f"Speech stopped at {event.audio_end_ms}ms")
# Transcription events
case "conversation.item.input_audio_transcription.completed":
print(f"User said: {event.transcript}")
case "conversation.item.input_audio_transcription.delta":
print(f"Partial: {event.delta}")
# Response events
case "response.created":
print(f"Response started: {event.response.id}")
case "response.audio_transcript.delta":
print(event.delta, end="", flush=True)
case "response.audio.delta":
audio = base64.b64decode(event.delta)
case "response.done":
print(f"Response complete: {event.response.status}")
# Function calls
case "response.function_call_arguments.done":
result = handle_function(event.name, event.arguments)
await conn.conversation.item.create(item={
"type": "function_call_output",
"call_id": event.call_id,
"output": json.dumps(result)
})
await conn.response.create()
# Errors
case "error":
print(f"Error: {event.error.message}")
```
## Common Patterns
### Manual Turn Mode (No VAD)
```python
await conn.session.update(session={"turn_detection": None})
# Manually control turns
await conn.input_audio_buffer.append(audio=b64_audio)
await conn.input_audio_buffer.commit() # End of user turn
await conn.response.create() # Trigger response
```
### Interrupt Handling
```python
async for event in conn:
if event.type == "input_audio_buffer.speech_started":
# User interrupted - cancel current response
await conn.response.cancel()
await conn.output_audio_buffer.clear()
```
### Conversation History
```python
# Add system message
await conn.conversation.item.create(item={
"type": "message",
"role": "system",
"content": [{"type": "input_text", "text": "Be concise."}]
})
# Add user message
await conn.conversation.item.create(item={
"type": "message",
"role": "user",
"content": [{"type": "input_text", "text": "Hello!"}]
})
await conn.response.create()
```
## Voice Options
| Voice | Description |
|-------|-------------|
| `alloy` | Neutral, balanced |
| `echo` | Warm, conversational |
| `shimmer` | Clear, professional |
| `sage` | Calm, authoritative |
| `coral` | Friendly, upbeat |
| `ash` | Deep, measured |
| `ballad` | Expressive |
| `verse` | Storytelling |
Azure voices: Use `AzureStandardVoice`, `AzureCustomVoice`, or `AzurePersonalVoice` models.
## Audio Formats
| Format | Sample Rate | Use Case |
|--------|-------------|----------|
| `pcm16` | 24kHz | Default, high quality |
| `pcm16-8000hz` | 8kHz | Telephony |
| `pcm16-16000hz` | 16kHz | Voice assistants |
| `g711_ulaw` | 8kHz | Telephony (US) |
| `g711_alaw` | 8kHz | Telephony (EU) |
## Turn Detection Options
```python
# Server VAD (default)
{"type": "server_vad", "threshold": 0.5, "silence_duration_ms": 500}
# Azure Semantic VAD (smarter detection)
{"type": "azure_semantic_vad"}
{"type": "azure_semantic_vad_en"} # English optimized
{"type": "azure_semantic_vad_multilingual"}
```
## Error Handling
```python
from azure.ai.voicelive.aio import ConnectionError, ConnectionClosed
try:
async with connect(...) as conn:
async for event in conn:
if event.type == "error":
print(f"API Error: {event.error.code} - {event.error.message}")
except ConnectionClosed as e:
print(f"Connection closed: {e.code} - {e.reason}")
except ConnectionError as e:
print(f"Connection error: {e}")
```
## References
- **Detailed API Reference**: See [references/api-reference.md](references/api-reference.md)
- **Complete Examples**: See [references/examples.md](references/examples.md)
- **All Models & Types**: See [references/models.md](references/models.md)