home / skills / microsoft / agent-skills / azure-ai-search-python
npx playbooks add-skill microsoft/agent-skills --skill azure-ai-search-python---
name: azure-ai-search-python
description: Clean code patterns for Azure AI Search Python SDK (azure-search-documents). Use when building search applications, creating/managing indexes, implementing agentic retrieval with knowledge bases, or working with vector/hybrid search. Covers SearchClient, SearchIndexClient, SearchIndexerClient, and KnowledgeBaseRetrievalClient.
---
# Azure AI Search Python SDK
Write clean, idiomatic Python code for Azure AI Search using `azure-search-documents`.
## Authentication Patterns
**Microsoft Entra ID (preferred)**:
```python
from azure.identity import DefaultAzureCredential
from azure.search.documents import SearchClient
credential = DefaultAzureCredential()
client = SearchClient(endpoint, index_name, credential)
```
**API Key**:
```python
from azure.core.credentials import AzureKeyCredential
from azure.search.documents import SearchClient
client = SearchClient(endpoint, index_name, AzureKeyCredential(api_key))
```
## Client Selection
| Client | Purpose |
|--------|---------|
| `SearchClient` | Query indexes, upload/update/delete documents |
| `SearchIndexClient` | Create/manage indexes, knowledge sources, knowledge bases |
| `SearchIndexerClient` | Manage indexers, skillsets, data sources |
| `KnowledgeBaseRetrievalClient` | Agentic retrieval with LLM-powered Q&A |
## Index Creation Pattern
```python
from azure.search.documents.indexes import SearchIndexClient
from azure.search.documents.indexes.models import (
SearchIndex, SearchField, VectorSearch, VectorSearchProfile,
HnswAlgorithmConfiguration, AzureOpenAIVectorizer,
AzureOpenAIVectorizerParameters, SemanticSearch,
SemanticConfiguration, SemanticPrioritizedFields, SemanticField
)
index = SearchIndex(
name=index_name,
fields=[
SearchField(name="id", type="Edm.String", key=True),
SearchField(name="content", type="Edm.String", searchable=True),
SearchField(name="embedding", type="Collection(Edm.Single)",
vector_search_dimensions=3072,
vector_search_profile_name="vector-profile"),
],
vector_search=VectorSearch(
profiles=[VectorSearchProfile(
name="vector-profile",
algorithm_configuration_name="hnsw-algo",
vectorizer_name="openai-vectorizer"
)],
algorithms=[HnswAlgorithmConfiguration(name="hnsw-algo")],
vectorizers=[AzureOpenAIVectorizer(
vectorizer_name="openai-vectorizer",
parameters=AzureOpenAIVectorizerParameters(
resource_url=aoai_endpoint,
deployment_name=embedding_deployment,
model_name=embedding_model
)
)]
),
semantic_search=SemanticSearch(
default_configuration_name="semantic-config",
configurations=[SemanticConfiguration(
name="semantic-config",
prioritized_fields=SemanticPrioritizedFields(
content_fields=[SemanticField(field_name="content")]
)
)]
)
)
index_client = SearchIndexClient(endpoint, credential)
index_client.create_or_update_index(index)
```
## Document Operations
```python
from azure.search.documents import SearchIndexingBufferedSender
# Batch upload with automatic batching
with SearchIndexingBufferedSender(endpoint, index_name, credential) as sender:
sender.upload_documents(documents)
# Direct operations via SearchClient
search_client = SearchClient(endpoint, index_name, credential)
search_client.upload_documents(documents) # Add new
search_client.merge_documents(documents) # Update existing
search_client.merge_or_upload_documents(documents) # Upsert
search_client.delete_documents(documents) # Remove
```
## Search Patterns
```python
# Basic search
results = search_client.search(search_text="query")
# Vector search
from azure.search.documents.models import VectorizedQuery
results = search_client.search(
search_text=None,
vector_queries=[VectorizedQuery(
vector=embedding,
k_nearest_neighbors=5,
fields="embedding"
)]
)
# Hybrid search (vector + keyword)
results = search_client.search(
search_text="query",
vector_queries=[VectorizedQuery(vector=embedding, k_nearest_neighbors=5, fields="embedding")],
query_type="semantic",
semantic_configuration_name="semantic-config"
)
# With filters
results = search_client.search(
search_text="query",
filter="category eq 'technology'",
select=["id", "title", "content"],
top=10
)
```
## Agentic Retrieval (Knowledge Bases)
For LLM-powered Q&A with answer synthesis, see [references/agentic-retrieval.md](references/agentic-retrieval.md).
Key concepts:
- **Knowledge Source**: Points to a search index
- **Knowledge Base**: Wraps knowledge sources + LLM for query planning and synthesis
- **Output modes**: `EXTRACTIVE_DATA` (raw chunks) or `ANSWER_SYNTHESIS` (LLM-generated answers)
## Async Pattern
```python
from azure.search.documents.aio import SearchClient
async with SearchClient(endpoint, index_name, credential) as client:
results = await client.search(search_text="query")
async for result in results:
print(result["title"])
```
## Best Practices
1. **Use environment variables** for endpoints, keys, and deployment names
2. **Prefer `DefaultAzureCredential`** over API keys for production
3. **Use `SearchIndexingBufferedSender`** for batch uploads (handles batching/retries)
4. **Always define semantic configuration** for agentic retrieval indexes
5. **Use `create_or_update_index`** for idempotent index creation
6. **Close clients** with context managers or explicit `close()`
## Field Types Reference
| EDM Type | Python | Notes |
|----------|--------|-------|
| `Edm.String` | str | Searchable text |
| `Edm.Int32` | int | Integer |
| `Edm.Int64` | int | Long integer |
| `Edm.Double` | float | Floating point |
| `Edm.Boolean` | bool | True/False |
| `Edm.DateTimeOffset` | datetime | ISO 8601 |
| `Collection(Edm.Single)` | List[float] | Vector embeddings |
| `Collection(Edm.String)` | List[str] | String arrays |
## Error Handling
```python
from azure.core.exceptions import (
HttpResponseError,
ResourceNotFoundError,
ResourceExistsError
)
try:
result = search_client.get_document(key="123")
except ResourceNotFoundError:
print("Document not found")
except HttpResponseError as e:
print(f"Search error: {e.message}")
```