home / skills / microck / ordinary-claude-skills / pytorch-lightning
/skills_all/claude-scientific-skills/scientific-skills/pytorch-lightning
This skill helps you organize PyTorch code with LightningModules and Trainers, enabling scalable multi-device training and clean data pipelines.
npx playbooks add skill microck/ordinary-claude-skills --skill pytorch-lightningReview the files below or copy the command above to add this skill to your agents.
---
name: pytorch-lightning
description: "Deep learning framework (PyTorch Lightning). Organize PyTorch code into LightningModules, configure Trainers for multi-GPU/TPU, implement data pipelines, callbacks, logging (W&B, TensorBoard), distributed training (DDP, FSDP, DeepSpeed), for scalable neural network training."
---
# PyTorch Lightning
## Overview
PyTorch Lightning is a deep learning framework that organizes PyTorch code to eliminate boilerplate while maintaining full flexibility. Automate training workflows, multi-device orchestration, and implement best practices for neural network training and scaling across multiple GPUs/TPUs.
## When to Use This Skill
This skill should be used when:
- Building, training, or deploying neural networks using PyTorch Lightning
- Organizing PyTorch code into LightningModules
- Configuring Trainers for multi-GPU/TPU training
- Implementing data pipelines with LightningDataModules
- Working with callbacks, logging, and distributed training strategies (DDP, FSDP, DeepSpeed)
- Structuring deep learning projects professionally
## Core Capabilities
### 1. LightningModule - Model Definition
Organize PyTorch models into six logical sections:
1. **Initialization** - `__init__()` and `setup()`
2. **Training Loop** - `training_step(batch, batch_idx)`
3. **Validation Loop** - `validation_step(batch, batch_idx)`
4. **Test Loop** - `test_step(batch, batch_idx)`
5. **Prediction** - `predict_step(batch, batch_idx)`
6. **Optimizer Configuration** - `configure_optimizers()`
**Quick template reference:** See `scripts/template_lightning_module.py` for a complete boilerplate.
**Detailed documentation:** Read `references/lightning_module.md` for comprehensive method documentation, hooks, properties, and best practices.
### 2. Trainer - Training Automation
The Trainer automates the training loop, device management, gradient operations, and callbacks. Key features:
- Multi-GPU/TPU support with strategy selection (DDP, FSDP, DeepSpeed)
- Automatic mixed precision training
- Gradient accumulation and clipping
- Checkpointing and early stopping
- Progress bars and logging
**Quick setup reference:** See `scripts/quick_trainer_setup.py` for common Trainer configurations.
**Detailed documentation:** Read `references/trainer.md` for all parameters, methods, and configuration options.
### 3. LightningDataModule - Data Pipeline Organization
Encapsulate all data processing steps in a reusable class:
1. `prepare_data()` - Download and process data (single-process)
2. `setup()` - Create datasets and apply transforms (per-GPU)
3. `train_dataloader()` - Return training DataLoader
4. `val_dataloader()` - Return validation DataLoader
5. `test_dataloader()` - Return test DataLoader
**Quick template reference:** See `scripts/template_datamodule.py` for a complete boilerplate.
**Detailed documentation:** Read `references/data_module.md` for method details and usage patterns.
### 4. Callbacks - Extensible Training Logic
Add custom functionality at specific training hooks without modifying your LightningModule. Built-in callbacks include:
- **ModelCheckpoint** - Save best/latest models
- **EarlyStopping** - Stop when metrics plateau
- **LearningRateMonitor** - Track LR scheduler changes
- **BatchSizeFinder** - Auto-determine optimal batch size
**Detailed documentation:** Read `references/callbacks.md` for built-in callbacks and custom callback creation.
### 5. Logging - Experiment Tracking
Integrate with multiple logging platforms:
- TensorBoard (default)
- Weights & Biases (WandbLogger)
- MLflow (MLFlowLogger)
- Neptune (NeptuneLogger)
- Comet (CometLogger)
- CSV (CSVLogger)
Log metrics using `self.log("metric_name", value)` in any LightningModule method.
**Detailed documentation:** Read `references/logging.md` for logger setup and configuration.
### 6. Distributed Training - Scale to Multiple Devices
Choose the right strategy based on model size:
- **DDP** - For models <500M parameters (ResNet, smaller transformers)
- **FSDP** - For models 500M+ parameters (large transformers, recommended for Lightning users)
- **DeepSpeed** - For cutting-edge features and fine-grained control
Configure with: `Trainer(strategy="ddp", accelerator="gpu", devices=4)`
**Detailed documentation:** Read `references/distributed_training.md` for strategy comparison and configuration.
### 7. Best Practices
- Device agnostic code - Use `self.device` instead of `.cuda()`
- Hyperparameter saving - Use `self.save_hyperparameters()` in `__init__()`
- Metric logging - Use `self.log()` for automatic aggregation across devices
- Reproducibility - Use `seed_everything()` and `Trainer(deterministic=True)`
- Debugging - Use `Trainer(fast_dev_run=True)` to test with 1 batch
**Detailed documentation:** Read `references/best_practices.md` for common patterns and pitfalls.
## Quick Workflow
1. **Define model:**
```python
class MyModel(L.LightningModule):
def __init__(self):
super().__init__()
self.save_hyperparameters()
self.model = YourNetwork()
def training_step(self, batch, batch_idx):
x, y = batch
loss = F.cross_entropy(self.model(x), y)
self.log("train_loss", loss)
return loss
def configure_optimizers(self):
return torch.optim.Adam(self.parameters())
```
2. **Prepare data:**
```python
# Option 1: Direct DataLoaders
train_loader = DataLoader(train_dataset, batch_size=32)
# Option 2: LightningDataModule (recommended for reusability)
dm = MyDataModule(batch_size=32)
```
3. **Train:**
```python
trainer = L.Trainer(max_epochs=10, accelerator="gpu", devices=2)
trainer.fit(model, train_loader) # or trainer.fit(model, datamodule=dm)
```
## Resources
### scripts/
Executable Python templates for common PyTorch Lightning patterns:
- `template_lightning_module.py` - Complete LightningModule boilerplate
- `template_datamodule.py` - Complete LightningDataModule boilerplate
- `quick_trainer_setup.py` - Common Trainer configuration examples
### references/
Detailed documentation for each PyTorch Lightning component:
- `lightning_module.md` - Comprehensive LightningModule guide (methods, hooks, properties)
- `trainer.md` - Trainer configuration and parameters
- `data_module.md` - LightningDataModule patterns and methods
- `callbacks.md` - Built-in and custom callbacks
- `logging.md` - Logger integrations and usage
- `distributed_training.md` - DDP, FSDP, DeepSpeed comparison and setup
- `best_practices.md` - Common patterns, tips, and pitfalls
This skill provides practical guidance and templates for using PyTorch Lightning to structure, scale, and run PyTorch-based deep learning projects. It focuses on LightningModule organization, Trainer configuration for multi-device training, LightningDataModule data pipelines, callbacks, logging integrations, and distributed training strategies. The content aims to remove boilerplate while preserving PyTorch flexibility for reproducible, production-ready workflows.
The skill inspects and documents core PyTorch Lightning components and supplies ready-to-use templates for model, data, and trainer setup. It explains LightningModule sections (init, training/validation/test/predict steps, optimizer config), LightningDataModule lifecycle, common callbacks, logging backends, and strategy selection for distributed training. It also points to quick examples and detailed reference guides to configure trainers, accelerators, and loggers for real experiments.
How do I pick between DDP, FSDP, and DeepSpeed?
Use DDP for models under a few hundred million parameters, FSDP for models that require sharded optimizer/parameter state across GPUs, and DeepSpeed when you need advanced optimizer offloading, ZeRO stages, or specific DeepSpeed features.
Where should I log metrics from?
Call self.log('metric', value) inside training_step/validation_step/test_step or hooks; Lightning handles device aggregation and logger routing.