home / skills / microck / ordinary-claude-skills / pytdc

This skill helps you access AI-ready therapeutics datasets and benchmarks for drug discovery, enabling standardized splits, model benchmarking, and generation

npx playbooks add skill microck/ordinary-claude-skills --skill pytdc

Review the files below or copy the command above to add this skill to your agents.

Files (7)
SKILL.md
12.3 KB
---
name: pytdc
description: "Therapeutics Data Commons. AI-ready drug discovery datasets (ADME, toxicity, DTI), benchmarks, scaffold splits, molecular oracles, for therapeutic ML and pharmacological prediction."
---

# PyTDC (Therapeutics Data Commons)

## Overview

PyTDC is an open-science platform providing AI-ready datasets and benchmarks for drug discovery and development. Access curated datasets spanning the entire therapeutics pipeline with standardized evaluation metrics and meaningful data splits, organized into three categories: single-instance prediction (molecular/protein properties), multi-instance prediction (drug-target interactions, DDI), and generation (molecule generation, retrosynthesis).

## When to Use This Skill

This skill should be used when:
- Working with drug discovery or therapeutic ML datasets
- Benchmarking machine learning models on standardized pharmaceutical tasks
- Predicting molecular properties (ADME, toxicity, bioactivity)
- Predicting drug-target or drug-drug interactions
- Generating novel molecules with desired properties
- Accessing curated datasets with proper train/test splits (scaffold, cold-split)
- Using molecular oracles for property optimization

## Installation & Setup

Install PyTDC using pip:

```bash
uv pip install PyTDC
```

To upgrade to the latest version:

```bash
uv pip install PyTDC --upgrade
```

Core dependencies (automatically installed):
- numpy, pandas, tqdm, seaborn, scikit_learn, fuzzywuzzy

Additional packages are installed automatically as needed for specific features.

## Quick Start

The basic pattern for accessing any TDC dataset follows this structure:

```python
from tdc.<problem> import <Task>
data = <Task>(name='<Dataset>')
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])
df = data.get_data(format='df')
```

Where:
- `<problem>`: One of `single_pred`, `multi_pred`, or `generation`
- `<Task>`: Specific task category (e.g., ADME, DTI, MolGen)
- `<Dataset>`: Dataset name within that task

**Example - Loading ADME data:**

```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')
split = data.get_split(method='scaffold')
# Returns dict with 'train', 'valid', 'test' DataFrames
```

## Single-Instance Prediction Tasks

Single-instance prediction involves forecasting properties of individual biomedical entities (molecules, proteins, etc.).

### Available Task Categories

#### 1. ADME (Absorption, Distribution, Metabolism, Excretion)

Predict pharmacokinetic properties of drug molecules.

```python
from tdc.single_pred import ADME
data = ADME(name='Caco2_Wang')  # Intestinal permeability
# Other datasets: HIA_Hou, Bioavailability_Ma, Lipophilicity_AstraZeneca, etc.
```

**Common ADME datasets:**
- Caco2 - Intestinal permeability
- HIA - Human intestinal absorption
- Bioavailability - Oral bioavailability
- Lipophilicity - Octanol-water partition coefficient
- Solubility - Aqueous solubility
- BBB - Blood-brain barrier penetration
- CYP - Cytochrome P450 metabolism

#### 2. Toxicity (Tox)

Predict toxicity and adverse effects of compounds.

```python
from tdc.single_pred import Tox
data = Tox(name='hERG')  # Cardiotoxicity
# Other datasets: AMES, DILI, Carcinogens_Lagunin, etc.
```

**Common toxicity datasets:**
- hERG - Cardiac toxicity
- AMES - Mutagenicity
- DILI - Drug-induced liver injury
- Carcinogens - Carcinogenicity
- ClinTox - Clinical trial toxicity

#### 3. HTS (High-Throughput Screening)

Bioactivity predictions from screening data.

```python
from tdc.single_pred import HTS
data = HTS(name='SARSCoV2_Vitro_Touret')
```

#### 4. QM (Quantum Mechanics)

Quantum mechanical properties of molecules.

```python
from tdc.single_pred import QM
data = QM(name='QM7')
```

#### 5. Other Single Prediction Tasks

- **Yields**: Chemical reaction yield prediction
- **Epitope**: Epitope prediction for biologics
- **Develop**: Development-stage predictions
- **CRISPROutcome**: Gene editing outcome prediction

### Data Format

Single prediction datasets typically return DataFrames with columns:
- `Drug_ID` or `Compound_ID`: Unique identifier
- `Drug` or `X`: SMILES string or molecular representation
- `Y`: Target label (continuous or binary)

## Multi-Instance Prediction Tasks

Multi-instance prediction involves forecasting properties of interactions between multiple biomedical entities.

### Available Task Categories

#### 1. DTI (Drug-Target Interaction)

Predict binding affinity between drugs and protein targets.

```python
from tdc.multi_pred import DTI
data = DTI(name='BindingDB_Kd')
split = data.get_split()
```

**Available datasets:**
- BindingDB_Kd - Dissociation constant (52,284 pairs)
- BindingDB_IC50 - Half-maximal inhibitory concentration (991,486 pairs)
- BindingDB_Ki - Inhibition constant (375,032 pairs)
- DAVIS, KIBA - Kinase binding datasets

**Data format:** Drug_ID, Target_ID, Drug (SMILES), Target (sequence), Y (binding affinity)

#### 2. DDI (Drug-Drug Interaction)

Predict interactions between drug pairs.

```python
from tdc.multi_pred import DDI
data = DDI(name='DrugBank')
split = data.get_split()
```

Multi-class classification task predicting interaction types. Dataset contains 191,808 DDI pairs with 1,706 drugs.

#### 3. PPI (Protein-Protein Interaction)

Predict protein-protein interactions.

```python
from tdc.multi_pred import PPI
data = PPI(name='HuRI')
```

#### 4. Other Multi-Prediction Tasks

- **GDA**: Gene-disease associations
- **DrugRes**: Drug resistance prediction
- **DrugSyn**: Drug synergy prediction
- **PeptideMHC**: Peptide-MHC binding
- **AntibodyAff**: Antibody affinity prediction
- **MTI**: miRNA-target interactions
- **Catalyst**: Catalyst prediction
- **TrialOutcome**: Clinical trial outcome prediction

## Generation Tasks

Generation tasks involve creating novel biomedical entities with desired properties.

### 1. Molecular Generation (MolGen)

Generate diverse, novel molecules with desirable chemical properties.

```python
from tdc.generation import MolGen
data = MolGen(name='ChEMBL_V29')
split = data.get_split()
```

Use with oracles to optimize for specific properties:

```python
from tdc import Oracle
oracle = Oracle(name='GSK3B')
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')  # Evaluate SMILES
```

See `references/oracles.md` for all available oracle functions.

### 2. Retrosynthesis (RetroSyn)

Predict reactants needed to synthesize a target molecule.

```python
from tdc.generation import RetroSyn
data = RetroSyn(name='USPTO')
split = data.get_split()
```

Dataset contains 1,939,253 reactions from USPTO database.

### 3. Paired Molecule Generation

Generate molecule pairs (e.g., prodrug-drug pairs).

```python
from tdc.generation import PairMolGen
data = PairMolGen(name='Prodrug')
```

For detailed oracle documentation and molecular generation workflows, refer to `references/oracles.md` and `scripts/molecular_generation.py`.

## Benchmark Groups

Benchmark groups provide curated collections of related datasets for systematic model evaluation.

### ADMET Benchmark Group

```python
from tdc.benchmark_group import admet_group
group = admet_group(path='data/')

# Get benchmark datasets
benchmark = group.get('Caco2_Wang')
predictions = {}

for seed in [1, 2, 3, 4, 5]:
    train, valid = benchmark['train'], benchmark['valid']
    # Train model here
    predictions[seed] = model.predict(benchmark['test'])

# Evaluate with required 5 seeds
results = group.evaluate(predictions)
```

**ADMET Group includes 22 datasets** covering absorption, distribution, metabolism, excretion, and toxicity.

### Other Benchmark Groups

Available benchmark groups include collections for:
- ADMET properties
- Drug-target interactions
- Drug combination prediction
- And more specialized therapeutic tasks

For benchmark evaluation workflows, see `scripts/benchmark_evaluation.py`.

## Data Functions

TDC provides comprehensive data processing utilities organized into four categories.

### 1. Dataset Splits

Retrieve train/validation/test partitions with various strategies:

```python
# Scaffold split (default for most tasks)
split = data.get_split(method='scaffold', seed=1, frac=[0.7, 0.1, 0.2])

# Random split
split = data.get_split(method='random', seed=42, frac=[0.8, 0.1, 0.1])

# Cold split (for DTI/DDI tasks)
split = data.get_split(method='cold_drug', seed=1)  # Unseen drugs in test
split = data.get_split(method='cold_target', seed=1)  # Unseen targets in test
```

**Available split strategies:**
- `random`: Random shuffling
- `scaffold`: Scaffold-based (for chemical diversity)
- `cold_drug`, `cold_target`, `cold_drug_target`: For DTI tasks
- `temporal`: Time-based splits for temporal datasets

### 2. Model Evaluation

Use standardized metrics for evaluation:

```python
from tdc import Evaluator

# For binary classification
evaluator = Evaluator(name='ROC-AUC')
score = evaluator(y_true, y_pred)

# For regression
evaluator = Evaluator(name='RMSE')
score = evaluator(y_true, y_pred)
```

**Available metrics:** ROC-AUC, PR-AUC, F1, Accuracy, RMSE, MAE, R2, Spearman, Pearson, and more.

### 3. Data Processing

TDC provides 11 key processing utilities:

```python
from tdc.chem_utils import MolConvert

# Molecule format conversion
converter = MolConvert(src='SMILES', dst='PyG')
pyg_graph = converter('CC(C)Cc1ccc(cc1)C(C)C(O)=O')
```

**Processing utilities include:**
- Molecule format conversion (SMILES, SELFIES, PyG, DGL, ECFP, etc.)
- Molecule filters (PAINS, drug-likeness)
- Label binarization and unit conversion
- Data balancing (over/under-sampling)
- Negative sampling for pair data
- Graph transformation
- Entity retrieval (CID to SMILES, UniProt to sequence)

For comprehensive utilities documentation, see `references/utilities.md`.

### 4. Molecule Generation Oracles

TDC provides 17+ oracle functions for molecular optimization:

```python
from tdc import Oracle

# Single oracle
oracle = Oracle(name='DRD2')
score = oracle('CC(C)Cc1ccc(cc1)C(C)C(O)=O')

# Multiple oracles
oracle = Oracle(name='JNK3')
scores = oracle(['SMILES1', 'SMILES2', 'SMILES3'])
```

For complete oracle documentation, see `references/oracles.md`.

## Advanced Features

### Retrieve Available Datasets

```python
from tdc.utils import retrieve_dataset_names

# Get all ADME datasets
adme_datasets = retrieve_dataset_names('ADME')

# Get all DTI datasets
dti_datasets = retrieve_dataset_names('DTI')
```

### Label Transformations

```python
# Get label mapping
label_map = data.get_label_map(name='DrugBank')

# Convert labels
from tdc.chem_utils import label_transform
transformed = label_transform(y, from_unit='nM', to_unit='p')
```

### Database Queries

```python
from tdc.utils import cid2smiles, uniprot2seq

# Convert PubChem CID to SMILES
smiles = cid2smiles(2244)

# Convert UniProt ID to amino acid sequence
sequence = uniprot2seq('P12345')
```

## Common Workflows

### Workflow 1: Train a Single Prediction Model

See `scripts/load_and_split_data.py` for a complete example:

```python
from tdc.single_pred import ADME
from tdc import Evaluator

# Load data
data = ADME(name='Caco2_Wang')
split = data.get_split(method='scaffold', seed=42)

train, valid, test = split['train'], split['valid'], split['test']

# Train model (user implements)
# model.fit(train['Drug'], train['Y'])

# Evaluate
evaluator = Evaluator(name='MAE')
# score = evaluator(test['Y'], predictions)
```

### Workflow 2: Benchmark Evaluation

See `scripts/benchmark_evaluation.py` for a complete example with multiple seeds and proper evaluation protocol.

### Workflow 3: Molecular Generation with Oracles

See `scripts/molecular_generation.py` for an example of goal-directed generation using oracle functions.

## Resources

This skill includes bundled resources for common TDC workflows:

### scripts/

- `load_and_split_data.py`: Template for loading and splitting TDC datasets with various strategies
- `benchmark_evaluation.py`: Template for running benchmark group evaluations with proper 5-seed protocol
- `molecular_generation.py`: Template for molecular generation using oracle functions

### references/

- `datasets.md`: Comprehensive catalog of all available datasets organized by task type
- `oracles.md`: Complete documentation of all 17+ molecule generation oracles
- `utilities.md`: Detailed guide to data processing, splitting, and evaluation utilities

## Additional Resources

- **Official Website**: https://tdcommons.ai
- **Documentation**: https://tdc.readthedocs.io
- **GitHub**: https://github.com/mims-harvard/TDC
- **Paper**: NeurIPS 2021 - "Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development"

Overview

This skill provides programmatic access to Therapeutics Data Commons (PyTDC), an open-science collection of AI-ready drug discovery datasets, benchmarks, and molecular oracles. It exposes curated ADME, toxicity, DTI, DDI, generation and retrosynthesis datasets with standardized splits and evaluation metrics. Use it to load datasets, get scaffold or cold splits, convert molecule formats, and run oracle evaluations for property optimization.

How this skill works

The skill wraps PyTDC dataset loaders and utilities so you can instantiate tasks by category (single_pred, multi_pred, generation) and request dataset-specific splits and dataframes. It also exposes processing utilities (format conversion, filtering, negative sampling), benchmark group evaluation workflows, and oracle functions for scoring molecules. Evaluation helpers provide standard metrics (ROC-AUC, RMSE, PR-AUC, etc.) to produce reproducible results across seeds and datasets.

When to use it

  • Preparing training/validation/test data for drug property prediction (ADME, toxicity, QM).
  • Benchmarking models on standardized pharmacological tasks with scaffold or cold splits.
  • Training or evaluating drug-target interaction and drug-drug interaction models.
  • Generating and optimizing molecules using oracle scoring functions.
  • Converting molecules between SMILES, SELFIES, graph formats, and standardizing datasets.

Best practices

  • Prefer scaffold or cold splits for realistic generalization instead of random splits.
  • Run benchmark evaluations across multiple random seeds (commonly 5) for robust comparisons.
  • Use provided evaluators to report standard metrics matching each task type (classification vs regression).
  • Apply molecule filters and unit conversions early in preprocessing to ensure consistent labels.
  • Leverage negative sampling utilities for pairwise tasks to construct balanced training sets.

Example use cases

  • Load an ADME dataset, get a scaffold split, train a regression model, and evaluate with MAE or RMSE.
  • Retrieve a DTI dataset with cold_target split to simulate unseen proteins and benchmark affinity predictors.
  • Use MolGen datasets and oracle functions to perform goal-directed molecular generation and score candidates.
  • Run ADMET benchmark group workflows to compare multiple datasets with a consistent 5-seed protocol.
  • Convert SMILES to PyG graph objects and feed them to a graph neural network training pipeline.

FAQ

How do I get a scaffold split for a dataset?

Call data.get_split(method='scaffold', seed=..., frac=[...]) on the task object; it returns dicts for train/valid/test DataFrames.

Are oracle scores batched?

Yes, oracle functions accept lists of SMILES and return scores for each input to support batched evaluation.