home / skills / microck / ordinary-claude-skills / performance-analysis

performance-analysis skill

/skills_all/performance-analysis

This skill performs comprehensive performance analysis, detects bottlenecks, profiles swarm operations, and delivers actionable optimization recommendations

This is most likely a fork of the performance-analysis skill from chrislemke
npx playbooks add skill microck/ordinary-claude-skills --skill performance-analysis

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
14.3 KB
---
name: performance-analysis
version: 1.0.0
description: Comprehensive performance analysis, bottleneck detection, and optimization recommendations for Claude Flow swarms
category: monitoring
tags: [performance, bottleneck, optimization, profiling, metrics, analysis]
author: Claude Flow Team
---

# Performance Analysis Skill

Comprehensive performance analysis suite for identifying bottlenecks, profiling swarm operations, generating detailed reports, and providing actionable optimization recommendations.

## Overview

This skill consolidates all performance analysis capabilities:
- **Bottleneck Detection**: Identify performance bottlenecks across communication, processing, memory, and network
- **Performance Profiling**: Real-time monitoring and historical analysis of swarm operations
- **Report Generation**: Create comprehensive performance reports in multiple formats
- **Optimization Recommendations**: AI-powered suggestions for improving performance

## Quick Start

### Basic Bottleneck Detection
```bash
npx claude-flow bottleneck detect
```

### Generate Performance Report
```bash
npx claude-flow analysis performance-report --format html --include-metrics
```

### Analyze and Auto-Fix
```bash
npx claude-flow bottleneck detect --fix --threshold 15
```

## Core Capabilities

### 1. Bottleneck Detection

#### Command Syntax
```bash
npx claude-flow bottleneck detect [options]
```

#### Options
- `--swarm-id, -s <id>` - Analyze specific swarm (default: current)
- `--time-range, -t <range>` - Analysis period: 1h, 24h, 7d, all (default: 1h)
- `--threshold <percent>` - Bottleneck threshold percentage (default: 20)
- `--export, -e <file>` - Export analysis to file
- `--fix` - Apply automatic optimizations

#### Usage Examples
```bash
# Basic detection for current swarm
npx claude-flow bottleneck detect

# Analyze specific swarm over 24 hours
npx claude-flow bottleneck detect --swarm-id swarm-123 -t 24h

# Export detailed analysis
npx claude-flow bottleneck detect -t 24h -e bottlenecks.json

# Auto-fix detected issues
npx claude-flow bottleneck detect --fix --threshold 15

# Low threshold for sensitive detection
npx claude-flow bottleneck detect --threshold 10 --export critical-issues.json
```

#### Metrics Analyzed

**Communication Bottlenecks:**
- Message queue delays
- Agent response times
- Coordination overhead
- Memory access patterns
- Inter-agent communication latency

**Processing Bottlenecks:**
- Task completion times
- Agent utilization rates
- Parallel execution efficiency
- Resource contention
- CPU/memory usage patterns

**Memory Bottlenecks:**
- Cache hit rates
- Memory access patterns
- Storage I/O performance
- Neural pattern loading times
- Memory allocation efficiency

**Network Bottlenecks:**
- API call latency
- MCP communication delays
- External service timeouts
- Concurrent request limits
- Network throughput issues

#### Output Format
```
šŸ” Bottleneck Analysis Report
━━━━━━━━━━━━━━━━━━━━━━━━━━━

šŸ“Š Summary
ā”œā”€ā”€ Time Range: Last 1 hour
ā”œā”€ā”€ Agents Analyzed: 6
ā”œā”€ā”€ Tasks Processed: 42
└── Critical Issues: 2

🚨 Critical Bottlenecks
1. Agent Communication (35% impact)
   └── coordinator → coder-1 messages delayed by 2.3s avg

2. Memory Access (28% impact)
   └── Neural pattern loading taking 1.8s per access

āš ļø Warning Bottlenecks
1. Task Queue (18% impact)
   └── 5 tasks waiting > 10s for assignment

šŸ’” Recommendations
1. Switch to hierarchical topology (est. 40% improvement)
2. Enable memory caching (est. 25% improvement)
3. Increase agent concurrency to 8 (est. 20% improvement)

āœ… Quick Fixes Available
Run with --fix to apply:
- Enable smart caching
- Optimize message routing
- Adjust agent priorities
```

### 2. Performance Profiling

#### Real-time Detection
Automatic analysis during task execution:
- Execution time vs. complexity
- Agent utilization rates
- Resource constraints
- Operation patterns

#### Common Bottleneck Patterns

**Time Bottlenecks:**
- Tasks taking > 5 minutes
- Sequential operations that could parallelize
- Redundant file operations
- Inefficient algorithm implementations

**Coordination Bottlenecks:**
- Single agent for complex tasks
- Unbalanced agent workloads
- Poor topology selection
- Excessive synchronization points

**Resource Bottlenecks:**
- High operation count (> 100)
- Memory constraints
- I/O limitations
- Thread pool saturation

#### MCP Integration
```javascript
// Check for bottlenecks in Claude Code
mcp__claude-flow__bottleneck_detect({
  timeRange: "1h",
  threshold: 20,
  autoFix: false
})

// Get detailed task results with bottleneck analysis
mcp__claude-flow__task_results({
  taskId: "task-123",
  format: "detailed"
})
```

**Result Format:**
```json
{
  "bottlenecks": [
    {
      "type": "coordination",
      "severity": "high",
      "description": "Single agent used for complex task",
      "recommendation": "Spawn specialized agents for parallel work",
      "impact": "35%",
      "affectedComponents": ["coordinator", "coder-1"]
    }
  ],
  "improvements": [
    {
      "area": "execution_time",
      "suggestion": "Use parallel task execution",
      "expectedImprovement": "30-50% time reduction",
      "implementationSteps": [
        "Split task into smaller units",
        "Spawn 3-4 specialized agents",
        "Use mesh topology for coordination"
      ]
    }
  ],
  "metrics": {
    "avgExecutionTime": "142s",
    "agentUtilization": "67%",
    "cacheHitRate": "82%",
    "parallelizationFactor": 1.2
  }
}
```

### 3. Report Generation

#### Command Syntax
```bash
npx claude-flow analysis performance-report [options]
```

#### Options
- `--format <type>` - Report format: json, html, markdown (default: markdown)
- `--include-metrics` - Include detailed metrics and charts
- `--compare <id>` - Compare with previous swarm
- `--time-range <range>` - Analysis period: 1h, 24h, 7d, 30d, all
- `--output <file>` - Output file path
- `--sections <list>` - Comma-separated sections to include

#### Report Sections
1. **Executive Summary**
   - Overall performance score
   - Key metrics overview
   - Critical findings

2. **Swarm Overview**
   - Topology configuration
   - Agent distribution
   - Task statistics

3. **Performance Metrics**
   - Execution times
   - Throughput analysis
   - Resource utilization
   - Latency breakdown

4. **Bottleneck Analysis**
   - Identified bottlenecks
   - Impact assessment
   - Optimization priorities

5. **Comparative Analysis** (when --compare used)
   - Performance trends
   - Improvement metrics
   - Regression detection

6. **Recommendations**
   - Prioritized action items
   - Expected improvements
   - Implementation guidance

#### Usage Examples
```bash
# Generate HTML report with all metrics
npx claude-flow analysis performance-report --format html --include-metrics

# Compare current swarm with previous
npx claude-flow analysis performance-report --compare swarm-123 --format markdown

# Custom output with specific sections
npx claude-flow analysis performance-report \
  --sections summary,metrics,recommendations \
  --output reports/perf-analysis.html \
  --format html

# Weekly performance report
npx claude-flow analysis performance-report \
  --time-range 7d \
  --include-metrics \
  --format markdown \
  --output docs/weekly-performance.md

# JSON format for CI/CD integration
npx claude-flow analysis performance-report \
  --format json \
  --output build/performance.json
```

#### Sample Markdown Report
```markdown
# Performance Analysis Report

## Executive Summary
- **Overall Score**: 87/100
- **Analysis Period**: Last 24 hours
- **Swarms Analyzed**: 3
- **Critical Issues**: 1

## Key Metrics
| Metric | Value | Trend | Target |
|--------|-------|-------|--------|
| Avg Task Time | 42s | ↓ 12% | 35s |
| Agent Utilization | 78% | ↑ 5% | 85% |
| Cache Hit Rate | 91% | → | 90% |
| Parallel Efficiency | 2.3x | ↑ 0.4x | 2.5x |

## Bottleneck Analysis
### Critical
1. **Agent Communication Delay** (Impact: 35%)
   - Coordinator → Coder messages delayed by 2.3s avg
   - **Fix**: Switch to hierarchical topology

### Warnings
1. **Memory Access Pattern** (Impact: 18%)
   - Neural pattern loading: 1.8s per access
   - **Fix**: Enable memory caching

## Recommendations
1. **High Priority**: Switch to hierarchical topology (40% improvement)
2. **Medium Priority**: Enable memory caching (25% improvement)
3. **Low Priority**: Increase agent concurrency to 8 (20% improvement)
```

### 4. Optimization Recommendations

#### Automatic Fixes
When using `--fix`, the following optimizations may be applied:

**1. Topology Optimization**
- Switch to more efficient topology (mesh → hierarchical)
- Adjust communication patterns
- Reduce coordination overhead
- Optimize message routing

**2. Caching Enhancement**
- Enable memory caching
- Optimize cache strategies
- Preload common patterns
- Implement cache warming

**3. Concurrency Tuning**
- Adjust agent counts
- Optimize parallel execution
- Balance workload distribution
- Implement load balancing

**4. Priority Adjustment**
- Reorder task queues
- Prioritize critical paths
- Reduce wait times
- Implement fair scheduling

**5. Resource Optimization**
- Optimize memory usage
- Reduce I/O operations
- Batch API calls
- Implement connection pooling

#### Performance Impact
Typical improvements after bottleneck resolution:

- **Communication**: 30-50% faster message delivery
- **Processing**: 20-40% reduced task completion time
- **Memory**: 40-60% fewer cache misses
- **Network**: 25-45% reduced API latency
- **Overall**: 25-45% total performance improvement

## Advanced Usage

### Continuous Monitoring
```bash
# Monitor performance in real-time
npx claude-flow swarm monitor --interval 5

# Generate hourly reports
while true; do
  npx claude-flow analysis performance-report \
    --format json \
    --output logs/perf-$(date +%Y%m%d-%H%M).json
  sleep 3600
done
```

### CI/CD Integration
```yaml
# .github/workflows/performance.yml
name: Performance Analysis
on: [push, pull_request]

jobs:
  analyze:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v2
      - name: Run Performance Analysis
        run: |
          npx claude-flow analysis performance-report \
            --format json \
            --output performance.json
      - name: Check Performance Thresholds
        run: |
          npx claude-flow bottleneck detect \
            --threshold 15 \
            --export bottlenecks.json
      - name: Upload Reports
        uses: actions/upload-artifact@v2
        with:
          name: performance-reports
          path: |
            performance.json
            bottlenecks.json
```

### Custom Analysis Scripts
```javascript
// scripts/analyze-performance.js
const { exec } = require('child_process');
const fs = require('fs');

async function analyzePerformance() {
  // Run bottleneck detection
  const bottlenecks = await runCommand(
    'npx claude-flow bottleneck detect --format json'
  );

  // Generate performance report
  const report = await runCommand(
    'npx claude-flow analysis performance-report --format json'
  );

  // Analyze results
  const analysis = {
    bottlenecks: JSON.parse(bottlenecks),
    performance: JSON.parse(report),
    timestamp: new Date().toISOString()
  };

  // Save combined analysis
  fs.writeFileSync(
    'analysis/combined-report.json',
    JSON.stringify(analysis, null, 2)
  );

  // Generate alerts if needed
  if (analysis.bottlenecks.critical.length > 0) {
    console.error('CRITICAL: Performance bottlenecks detected!');
    process.exit(1);
  }
}

function runCommand(cmd) {
  return new Promise((resolve, reject) => {
    exec(cmd, (error, stdout, stderr) => {
      if (error) reject(error);
      else resolve(stdout);
    });
  });
}

analyzePerformance().catch(console.error);
```

## Best Practices

### 1. Regular Analysis
- Run bottleneck detection after major changes
- Generate weekly performance reports
- Monitor trends over time
- Set up automated alerts

### 2. Threshold Tuning
- Start with default threshold (20%)
- Lower for production systems (10-15%)
- Higher for development (25-30%)
- Adjust based on requirements

### 3. Fix Strategy
- Always review before applying --fix
- Test fixes in development first
- Apply fixes incrementally
- Monitor impact after changes

### 4. Report Integration
- Include in documentation
- Share with team regularly
- Track improvements over time
- Use for capacity planning

### 5. Continuous Optimization
- Learn from each analysis
- Build performance budgets
- Establish baselines
- Set improvement goals

## Troubleshooting

### Common Issues

**High Memory Usage**
```bash
# Analyze memory bottlenecks
npx claude-flow bottleneck detect --threshold 10

# Check cache performance
npx claude-flow cache manage --action stats

# Review memory metrics
npx claude-flow memory usage
```

**Slow Task Execution**
```bash
# Identify slow tasks
npx claude-flow task status --detailed

# Analyze coordination overhead
npx claude-flow bottleneck detect --time-range 1h

# Check agent utilization
npx claude-flow agent metrics
```

**Poor Cache Performance**
```bash
# Analyze cache hit rates
npx claude-flow analysis performance-report --sections metrics

# Review cache strategy
npx claude-flow cache manage --action analyze

# Enable cache warming
npx claude-flow bottleneck detect --fix
```

## Integration with Other Skills

- **swarm-orchestration**: Use performance data to optimize topology
- **memory-management**: Improve cache strategies based on analysis
- **task-coordination**: Adjust scheduling based on bottlenecks
- **neural-training**: Train patterns from performance data

## Related Commands

- `npx claude-flow swarm monitor` - Real-time monitoring
- `npx claude-flow token usage` - Token optimization analysis
- `npx claude-flow cache manage` - Cache optimization
- `npx claude-flow agent metrics` - Agent performance metrics
- `npx claude-flow task status` - Task execution analysis

## See Also

- [Bottleneck Detection Guide](/workspaces/claude-code-flow/.claude/commands/analysis/bottleneck-detect.md)
- [Performance Report Guide](/workspaces/claude-code-flow/.claude/commands/analysis/performance-report.md)
- [Performance Bottlenecks Overview](/workspaces/claude-code-flow/.claude/commands/analysis/performance-bottlenecks.md)
- [Swarm Monitoring Documentation](../swarm-orchestration/SKILL.md)
- [Memory Management Documentation](../memory-management/SKILL.md)

---

**Version**: 1.0.0
**Last Updated**: 2025-10-19
**Maintainer**: Claude Flow Team

Overview

This skill provides a comprehensive performance analysis suite for Claude Flow swarms, focusing on bottleneck detection, profiling, report generation, and actionable optimization recommendations. It consolidates real-time and historical metrics to pinpoint communication, processing, memory, and network hotspots and suggests targeted fixes.

How this skill works

The skill inspects swarm telemetry, message traces, task execution logs, memory and cache metrics, and network/API latencies to detect high-impact bottlenecks. It runs configurable analyses (time ranges, thresholds, specific swarm IDs), generates multi-format reports, and can apply automated optimizations when requested. Results include severity, impact estimates, and step-by-step remediation guidance.

When to use it

  • After deploying topology or agent changes to validate impact
  • When task completion times or throughput degrade unexpectedly
  • As part of CI/CD to enforce performance budgets
  • During capacity planning or before scaling swarms
  • To generate executive and technical performance reports for stakeholders

Best practices

  • Run regular analyses and trend reports to detect regressions early
  • Tune detection thresholds for production (10–15%) and development (20–30%)
  • Review suggested --fix actions in staging before applying to production
  • Prioritize fixes by estimated impact and test changes incrementally
  • Integrate generated JSON reports into CI/CD and monitoring pipelines

Example use cases

  • Detect and resolve coordinator-to-agent communication delays causing cascading task slowdowns
  • Profile a 24h window to find memory access hotspots and enable caching strategies
  • Generate HTML or JSON reports for weekly team reviews and capacity planning
  • Run automated detection in CI to fail PRs that introduce critical bottlenecks
  • Auto-apply low-risk fixes like cache warming and message routing tweaks with --fix for rapid remediation

FAQ

What metrics does the skill analyze?

It analyzes message queue delays, agent response times, task completion times, CPU/memory usage, cache hit rates, API latencies, and other coordination and I/O signals.

How safe is the --fix option?

--fix applies predefined optimizations such as enabling caching, topology adjustments, or concurrency tuning. Always review and test suggested changes in staging and use conservative thresholds for production.