home / skills / microck / ordinary-claude-skills / matchms

This skill helps you analyze mass spectrometry data with matchms by loading, filtering, comparing spectra, and building reproducible workflows.

npx playbooks add skill microck/ordinary-claude-skills --skill matchms

Review the files below or copy the command above to add this skill to your agents.

Files (5)
SKILL.md
6.6 KB
---
name: matchms
description: "Mass spectrometry analysis. Process mzML/MGF/MSP, spectral similarity (cosine, modified cosine), metadata harmonization, compound ID, for metabolomics and MS data processing."
---

# Matchms

## Overview

Matchms is an open-source Python library for mass spectrometry data processing and analysis. Import spectra from various formats, standardize metadata, filter peaks, calculate spectral similarities, and build reproducible analytical workflows.

## Core Capabilities

### 1. Importing and Exporting Mass Spectrometry Data

Load spectra from multiple file formats and export processed data:

```python
from matchms.importing import load_from_mgf, load_from_mzml, load_from_msp, load_from_json
from matchms.exporting import save_as_mgf, save_as_msp, save_as_json

# Import spectra
spectra = list(load_from_mgf("spectra.mgf"))
spectra = list(load_from_mzml("data.mzML"))
spectra = list(load_from_msp("library.msp"))

# Export processed spectra
save_as_mgf(spectra, "output.mgf")
save_as_json(spectra, "output.json")
```

**Supported formats:**
- mzML and mzXML (raw mass spectrometry formats)
- MGF (Mascot Generic Format)
- MSP (spectral library format)
- JSON (GNPS-compatible)
- metabolomics-USI references
- Pickle (Python serialization)

For detailed importing/exporting documentation, consult `references/importing_exporting.md`.

### 2. Spectrum Filtering and Processing

Apply comprehensive filters to standardize metadata and refine peak data:

```python
from matchms.filtering import default_filters, normalize_intensities
from matchms.filtering import select_by_relative_intensity, require_minimum_number_of_peaks

# Apply default metadata harmonization filters
spectrum = default_filters(spectrum)

# Normalize peak intensities
spectrum = normalize_intensities(spectrum)

# Filter peaks by relative intensity
spectrum = select_by_relative_intensity(spectrum, intensity_from=0.01, intensity_to=1.0)

# Require minimum peaks
spectrum = require_minimum_number_of_peaks(spectrum, n_required=5)
```

**Filter categories:**
- **Metadata processing**: Harmonize compound names, derive chemical structures, standardize adducts, correct charges
- **Peak filtering**: Normalize intensities, select by m/z or intensity, remove precursor peaks
- **Quality control**: Require minimum peaks, validate precursor m/z, ensure metadata completeness
- **Chemical annotation**: Add fingerprints, derive InChI/SMILES, repair structural mismatches

Matchms provides 40+ filters. For the complete filter reference, consult `references/filtering.md`.

### 3. Calculating Spectral Similarities

Compare spectra using various similarity metrics:

```python
from matchms import calculate_scores
from matchms.similarity import CosineGreedy, ModifiedCosine, CosineHungarian

# Calculate cosine similarity (fast, greedy algorithm)
scores = calculate_scores(references=library_spectra,
                         queries=query_spectra,
                         similarity_function=CosineGreedy())

# Calculate modified cosine (accounts for precursor m/z differences)
scores = calculate_scores(references=library_spectra,
                         queries=query_spectra,
                         similarity_function=ModifiedCosine(tolerance=0.1))

# Get best matches
best_matches = scores.scores_by_query(query_spectra[0], sort=True)[:10]
```

**Available similarity functions:**
- **CosineGreedy/CosineHungarian**: Peak-based cosine similarity with different matching algorithms
- **ModifiedCosine**: Cosine similarity accounting for precursor mass differences
- **NeutralLossesCosine**: Similarity based on neutral loss patterns
- **FingerprintSimilarity**: Molecular structure similarity using fingerprints
- **MetadataMatch**: Compare user-defined metadata fields
- **PrecursorMzMatch/ParentMassMatch**: Simple mass-based filtering

For detailed similarity function documentation, consult `references/similarity.md`.

### 4. Building Processing Pipelines

Create reproducible, multi-step analysis workflows:

```python
from matchms import SpectrumProcessor
from matchms.filtering import default_filters, normalize_intensities
from matchms.filtering import select_by_relative_intensity, remove_peaks_around_precursor_mz

# Define a processing pipeline
processor = SpectrumProcessor([
    default_filters,
    normalize_intensities,
    lambda s: select_by_relative_intensity(s, intensity_from=0.01),
    lambda s: remove_peaks_around_precursor_mz(s, mz_tolerance=17)
])

# Apply to all spectra
processed_spectra = [processor(s) for s in spectra]
```

### 5. Working with Spectrum Objects

The core `Spectrum` class contains mass spectral data:

```python
from matchms import Spectrum
import numpy as np

# Create a spectrum
mz = np.array([100.0, 150.0, 200.0, 250.0])
intensities = np.array([0.1, 0.5, 0.9, 0.3])
metadata = {"precursor_mz": 250.5, "ionmode": "positive"}

spectrum = Spectrum(mz=mz, intensities=intensities, metadata=metadata)

# Access spectrum properties
print(spectrum.peaks.mz)           # m/z values
print(spectrum.peaks.intensities)  # Intensity values
print(spectrum.get("precursor_mz")) # Metadata field

# Visualize spectra
spectrum.plot()
spectrum.plot_against(reference_spectrum)
```

### 6. Metadata Management

Standardize and harmonize spectrum metadata:

```python
# Metadata is automatically harmonized
spectrum.set("Precursor_mz", 250.5)  # Gets harmonized to lowercase key
print(spectrum.get("precursor_mz"))   # Returns 250.5

# Derive chemical information
from matchms.filtering import derive_inchi_from_smiles, derive_inchikey_from_inchi
from matchms.filtering import add_fingerprint

spectrum = derive_inchi_from_smiles(spectrum)
spectrum = derive_inchikey_from_inchi(spectrum)
spectrum = add_fingerprint(spectrum, fingerprint_type="morgan", nbits=2048)
```

## Common Workflows

For typical mass spectrometry analysis workflows, including:
- Loading and preprocessing spectral libraries
- Matching unknown spectra against reference libraries
- Quality filtering and data cleaning
- Large-scale similarity comparisons
- Network-based spectral clustering

Consult `references/workflows.md` for detailed examples.

## Installation

```bash
uv pip install matchms
```

For molecular structure processing (SMILES, InChI):
```bash
uv pip install matchms[chemistry]
```

## Reference Documentation

Detailed reference documentation is available in the `references/` directory:
- `filtering.md` - Complete filter function reference with descriptions
- `similarity.md` - All similarity metrics and when to use them
- `importing_exporting.md` - File format details and I/O operations
- `workflows.md` - Common analysis patterns and examples

Load these references as needed for detailed information about specific matchms capabilities.

Overview

This skill provides a compact, practical interface to matchms for mass spectrometry data processing. It lets you import/export common formats, harmonize metadata, filter peaks, compute spectral similarities, and build reproducible processing pipelines for metabolomics and MS workflows. The focus is on fast, scriptable operations suited to library matching and large-scale comparisons.

How this skill works

The skill wraps matchms functionality to load spectra from mzML/MGF/MSP/JSON and create Spectrum objects with mz, intensities, and metadata. It applies configurable filters to standardize metadata and clean peak lists, then computes similarity scores using cosine, modified cosine, or fingerprint-based methods. Pipelines are composed from reusable filter functions and a SpectrumProcessor to batch-process collections and produce ranked matches or filtered libraries.

When to use it

  • Preparing raw or library spectra for analysis and ensuring consistent metadata
  • Removing noise, normalizing intensities, and enforcing quality thresholds before matching
  • Searching unknowns against reference libraries using cosine or modified-cosine scoring
  • Automating batch processing pipelines for large datasets or reproducible analyses
  • Generating inputs for downstream clustering, molecular networking, or cheminformatics steps

Best practices

  • Apply metadata harmonization (default_filters) first to ensure consistent keys and derived fields
  • Normalize intensities and remove low-relative-intensity peaks to reduce spurious matches
  • Require a minimum number of peaks and validate precursor m/z to improve match reliability
  • Choose ModifiedCosine for spectra with precursor mass shifts and CosineGreedy for fast bulk comparisons
  • Compose processing steps into a SpectrumProcessor for reproducibility and easier debugging

Example use cases

  • Load a public MGF library, harmonize metadata, and export a cleaned JSON for sharing
  • Process LC-MS/MS mzML files to remove precursor peaks and normalize intensities before library search
  • Compute modified cosine scores between query spectra and a reference library to annotate unknowns
  • Add molecular fingerprints and compute fingerprint similarity to combine spectral and structural matching
  • Batch-process thousands of spectra with a predefined pipeline and save top N matches per query

FAQ

Which file formats are supported?

mzML, mzXML, MGF, MSP, JSON (GNPS-compatible), and pickle serialization are all supported for import/export.

When should I use ModifiedCosine instead of Cosine?

Use ModifiedCosine when spectra may have precursor mass shifts or when neutral losses matter; CosineGreedy is faster and suitable for straightforward peak-to-peak matching.