home / skills / microck / ordinary-claude-skills / fda-database

fda-database skill

/skills_all/fda-database

This skill queries openFDA for drugs, devices, recalls, and substances to support regulatory analysis and safety research.

npx playbooks add skill microck/ordinary-claude-skills --skill fda-database

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
14.0 KB
---
name: fda-database
description: "Query openFDA API for drugs, devices, adverse events, recalls, regulatory submissions (510k, PMA), substance identification (UNII), for FDA regulatory data analysis and safety research."
---

# FDA Database Access

## Overview

Access comprehensive FDA regulatory data through openFDA, the FDA's initiative to provide open APIs for public datasets. Query information about drugs, medical devices, foods, animal/veterinary products, and substances using Python with standardized interfaces.

**Key capabilities:**
- Query adverse events for drugs, devices, foods, and veterinary products
- Access product labeling, approvals, and regulatory submissions
- Monitor recalls and enforcement actions
- Look up National Drug Codes (NDC) and substance identifiers (UNII)
- Analyze device classifications and clearances (510k, PMA)
- Track drug shortages and supply issues
- Research chemical structures and substance relationships

## When to Use This Skill

This skill should be used when working with:
- **Drug research**: Safety profiles, adverse events, labeling, approvals, shortages
- **Medical device surveillance**: Adverse events, recalls, 510(k) clearances, PMA approvals
- **Food safety**: Recalls, allergen tracking, adverse events, dietary supplements
- **Veterinary medicine**: Animal drug adverse events by species and breed
- **Chemical/substance data**: UNII lookup, CAS number mapping, molecular structures
- **Regulatory analysis**: Approval pathways, enforcement actions, compliance tracking
- **Pharmacovigilance**: Post-market surveillance, safety signal detection
- **Scientific research**: Drug interactions, comparative safety, epidemiological studies

## Quick Start

### 1. Basic Setup

```python
from scripts.fda_query import FDAQuery

# Initialize (API key optional but recommended)
fda = FDAQuery(api_key="YOUR_API_KEY")

# Query drug adverse events
events = fda.query_drug_events("aspirin", limit=100)

# Get drug labeling
label = fda.query_drug_label("Lipitor", brand=True)

# Search device recalls
recalls = fda.query("device", "enforcement",
                   search="classification:Class+I",
                   limit=50)
```

### 2. API Key Setup

While the API works without a key, registering provides higher rate limits:
- **Without key**: 240 requests/min, 1,000/day
- **With key**: 240 requests/min, 120,000/day

Register at: https://open.fda.gov/apis/authentication/

Set as environment variable:
```bash
export FDA_API_KEY="your_key_here"
```

### 3. Running Examples

```bash
# Run comprehensive examples
python scripts/fda_examples.py

# This demonstrates:
# - Drug safety profiles
# - Device surveillance
# - Food recall monitoring
# - Substance lookup
# - Comparative drug analysis
# - Veterinary drug analysis
```

## FDA Database Categories

### Drugs

Access 6 drug-related endpoints covering the full drug lifecycle from approval to post-market surveillance.

**Endpoints:**
1. **Adverse Events** - Reports of side effects, errors, and therapeutic failures
2. **Product Labeling** - Prescribing information, warnings, indications
3. **NDC Directory** - National Drug Code product information
4. **Enforcement Reports** - Drug recalls and safety actions
5. **Drugs@FDA** - Historical approval data since 1939
6. **Drug Shortages** - Current and resolved supply issues

**Common use cases:**
```python
# Safety signal detection
fda.count_by_field("drug", "event",
                  search="patient.drug.medicinalproduct:metformin",
                  field="patient.reaction.reactionmeddrapt")

# Get prescribing information
label = fda.query_drug_label("Keytruda", brand=True)

# Check for recalls
recalls = fda.query_drug_recalls(drug_name="metformin")

# Monitor shortages
shortages = fda.query("drug", "drugshortages",
                     search="status:Currently+in+Shortage")
```

**Reference:** See `references/drugs.md` for detailed documentation

### Devices

Access 9 device-related endpoints covering medical device safety, approvals, and registrations.

**Endpoints:**
1. **Adverse Events** - Device malfunctions, injuries, deaths
2. **510(k) Clearances** - Premarket notifications
3. **Classification** - Device categories and risk classes
4. **Enforcement Reports** - Device recalls
5. **Recalls** - Detailed recall information
6. **PMA** - Premarket approval data for Class III devices
7. **Registrations & Listings** - Manufacturing facility data
8. **UDI** - Unique Device Identification database
9. **COVID-19 Serology** - Antibody test performance data

**Common use cases:**
```python
# Monitor device safety
events = fda.query_device_events("pacemaker", limit=100)

# Look up device classification
classification = fda.query_device_classification("DQY")

# Find 510(k) clearances
clearances = fda.query_device_510k(applicant="Medtronic")

# Search by UDI
device_info = fda.query("device", "udi",
                       search="identifiers.id:00884838003019")
```

**Reference:** See `references/devices.md` for detailed documentation

### Foods

Access 2 food-related endpoints for safety monitoring and recalls.

**Endpoints:**
1. **Adverse Events** - Food, dietary supplement, and cosmetic events
2. **Enforcement Reports** - Food product recalls

**Common use cases:**
```python
# Monitor allergen recalls
recalls = fda.query_food_recalls(reason="undeclared peanut")

# Track dietary supplement events
events = fda.query_food_events(
    industry="Dietary Supplements")

# Find contamination recalls
listeria = fda.query_food_recalls(
    reason="listeria",
    classification="I")
```

**Reference:** See `references/foods.md` for detailed documentation

### Animal & Veterinary

Access veterinary drug adverse event data with species-specific information.

**Endpoint:**
1. **Adverse Events** - Animal drug side effects by species, breed, and product

**Common use cases:**
```python
# Species-specific events
dog_events = fda.query_animal_events(
    species="Dog",
    drug_name="flea collar")

# Breed predisposition analysis
breed_query = fda.query("animalandveterinary", "event",
    search="reaction.veddra_term_name:*seizure*+AND+"
           "animal.breed.breed_component:*Labrador*")
```

**Reference:** See `references/animal_veterinary.md` for detailed documentation

### Substances & Other

Access molecular-level substance data with UNII codes, chemical structures, and relationships.

**Endpoints:**
1. **Substance Data** - UNII, CAS, chemical structures, relationships
2. **NSDE** - Historical substance data (legacy)

**Common use cases:**
```python
# UNII to CAS mapping
substance = fda.query_substance_by_unii("R16CO5Y76E")

# Search by name
results = fda.query_substance_by_name("acetaminophen")

# Get chemical structure
structure = fda.query("other", "substance",
    search="names.name:ibuprofen+AND+substanceClass:chemical")
```

**Reference:** See `references/other.md` for detailed documentation

## Common Query Patterns

### Pattern 1: Safety Profile Analysis

Create comprehensive safety profiles combining multiple data sources:

```python
def drug_safety_profile(fda, drug_name):
    """Generate complete safety profile."""

    # 1. Total adverse events
    events = fda.query_drug_events(drug_name, limit=1)
    total = events["meta"]["results"]["total"]

    # 2. Most common reactions
    reactions = fda.count_by_field(
        "drug", "event",
        search=f"patient.drug.medicinalproduct:*{drug_name}*",
        field="patient.reaction.reactionmeddrapt",
        exact=True
    )

    # 3. Serious events
    serious = fda.query("drug", "event",
        search=f"patient.drug.medicinalproduct:*{drug_name}*+AND+serious:1",
        limit=1)

    # 4. Recent recalls
    recalls = fda.query_drug_recalls(drug_name=drug_name)

    return {
        "total_events": total,
        "top_reactions": reactions["results"][:10],
        "serious_events": serious["meta"]["results"]["total"],
        "recalls": recalls["results"]
    }
```

### Pattern 2: Temporal Trend Analysis

Analyze trends over time using date ranges:

```python
from datetime import datetime, timedelta

def get_monthly_trends(fda, drug_name, months=12):
    """Get monthly adverse event trends."""
    trends = []

    for i in range(months):
        end = datetime.now() - timedelta(days=30*i)
        start = end - timedelta(days=30)

        date_range = f"[{start.strftime('%Y%m%d')}+TO+{end.strftime('%Y%m%d')}]"
        search = f"patient.drug.medicinalproduct:*{drug_name}*+AND+receivedate:{date_range}"

        result = fda.query("drug", "event", search=search, limit=1)
        count = result["meta"]["results"]["total"] if "meta" in result else 0

        trends.append({
            "month": start.strftime("%Y-%m"),
            "events": count
        })

    return trends
```

### Pattern 3: Comparative Analysis

Compare multiple products side-by-side:

```python
def compare_drugs(fda, drug_list):
    """Compare safety profiles of multiple drugs."""
    comparison = {}

    for drug in drug_list:
        # Total events
        events = fda.query_drug_events(drug, limit=1)
        total = events["meta"]["results"]["total"] if "meta" in events else 0

        # Serious events
        serious = fda.query("drug", "event",
            search=f"patient.drug.medicinalproduct:*{drug}*+AND+serious:1",
            limit=1)
        serious_count = serious["meta"]["results"]["total"] if "meta" in serious else 0

        comparison[drug] = {
            "total_events": total,
            "serious_events": serious_count,
            "serious_rate": (serious_count/total*100) if total > 0 else 0
        }

    return comparison
```

### Pattern 4: Cross-Database Lookup

Link data across multiple endpoints:

```python
def comprehensive_device_lookup(fda, device_name):
    """Look up device across all relevant databases."""

    return {
        "adverse_events": fda.query_device_events(device_name, limit=10),
        "510k_clearances": fda.query_device_510k(device_name=device_name),
        "recalls": fda.query("device", "enforcement",
                           search=f"product_description:*{device_name}*"),
        "udi_info": fda.query("device", "udi",
                            search=f"brand_name:*{device_name}*")
    }
```

## Working with Results

### Response Structure

All API responses follow this structure:

```python
{
    "meta": {
        "disclaimer": "...",
        "results": {
            "skip": 0,
            "limit": 100,
            "total": 15234
        }
    },
    "results": [
        # Array of result objects
    ]
}
```

### Error Handling

Always handle potential errors:

```python
result = fda.query_drug_events("aspirin", limit=10)

if "error" in result:
    print(f"Error: {result['error']}")
elif "results" not in result or len(result["results"]) == 0:
    print("No results found")
else:
    # Process results
    for event in result["results"]:
        # Handle event data
        pass
```

### Pagination

For large result sets, use pagination:

```python
# Automatic pagination
all_results = fda.query_all(
    "drug", "event",
    search="patient.drug.medicinalproduct:aspirin",
    max_results=5000
)

# Manual pagination
for skip in range(0, 1000, 100):
    batch = fda.query("drug", "event",
                     search="...",
                     limit=100,
                     skip=skip)
    # Process batch
```

## Best Practices

### 1. Use Specific Searches

**DO:**
```python
# Specific field search
search="patient.drug.medicinalproduct:aspirin"
```

**DON'T:**
```python
# Overly broad wildcard
search="*aspirin*"
```

### 2. Implement Rate Limiting

The `FDAQuery` class handles rate limiting automatically, but be aware of limits:
- 240 requests per minute
- 120,000 requests per day (with API key)

### 3. Cache Frequently Accessed Data

The `FDAQuery` class includes built-in caching (enabled by default):

```python
# Caching is automatic
fda = FDAQuery(api_key=api_key, use_cache=True, cache_ttl=3600)
```

### 4. Use Exact Matching for Counting

When counting/aggregating, use `.exact` suffix:

```python
# Count exact phrases
fda.count_by_field("drug", "event",
                  search="...",
                  field="patient.reaction.reactionmeddrapt",
                  exact=True)  # Adds .exact automatically
```

### 5. Validate Input Data

Clean and validate search terms:

```python
def clean_drug_name(name):
    """Clean drug name for query."""
    return name.strip().replace('"', '\\"')

drug_name = clean_drug_name(user_input)
```

## API Reference

For detailed information about:
- **Authentication and rate limits** → See `references/api_basics.md`
- **Drug databases** → See `references/drugs.md`
- **Device databases** → See `references/devices.md`
- **Food databases** → See `references/foods.md`
- **Animal/veterinary databases** → See `references/animal_veterinary.md`
- **Substance databases** → See `references/other.md`

## Scripts

### `scripts/fda_query.py`

Main query module with `FDAQuery` class providing:
- Unified interface to all FDA endpoints
- Automatic rate limiting and caching
- Error handling and retry logic
- Common query patterns

### `scripts/fda_examples.py`

Comprehensive examples demonstrating:
- Drug safety profile analysis
- Device surveillance monitoring
- Food recall tracking
- Substance lookup
- Comparative drug analysis
- Veterinary drug analysis

Run examples:
```bash
python scripts/fda_examples.py
```

## Additional Resources

- **openFDA Homepage**: https://open.fda.gov/
- **API Documentation**: https://open.fda.gov/apis/
- **Interactive API Explorer**: https://open.fda.gov/apis/try-the-api/
- **GitHub Repository**: https://github.com/FDA/openfda
- **Terms of Service**: https://open.fda.gov/terms/

## Support and Troubleshooting

### Common Issues

**Issue**: Rate limit exceeded
- **Solution**: Use API key, implement delays, or reduce request frequency

**Issue**: No results found
- **Solution**: Try broader search terms, check spelling, use wildcards

**Issue**: Invalid query syntax
- **Solution**: Review query syntax in `references/api_basics.md`

**Issue**: Missing fields in results
- **Solution**: Not all records contain all fields; always check field existence

### Getting Help

- **GitHub Issues**: https://github.com/FDA/openfda/issues
- **Email**: [email protected]

Overview

This skill provides a unified Python interface to the FDA open data APIs for drugs, devices, foods, animal/veterinary products, and substance records. It enables programmatic queries for adverse events, recalls, approvals (510(k), PMA), labeling, NDC/UNII lookups, and enforcement actions. Use it to build safety research, regulatory monitoring, and data analysis workflows.

How this skill works

The skill wraps openFDA endpoints in an FDAQuery class that handles request construction, automatic rate limiting, caching, pagination, and basic error handling. It exposes convenience methods for common queries (drug events, device 510(k), enforcement, substance lookup) and helper patterns for counts, temporal trends, and cross-database lookups. Responses follow a consistent meta/results structure so you can aggregate and join data across endpoints.

When to use it

  • Conduct pharmacovigilance or adverse event signal detection
  • Monitor medical device clearances, recalls, and safety trends
  • Track food recalls, allergens, and enforcement actions
  • Perform regulatory analysis of approvals and 510(k)/PMA submissions
  • Map substances using UNII/CAS and retrieve chemical structure metadata
  • Build dashboards or automated alerts for shortages and supply issues

Best practices

  • Use precise fielded searches instead of broad wildcards to reduce noise
  • Register and use an API key to increase daily rate limits
  • Enable built-in caching and respect rate limits for large queries
  • Use exact matching when aggregating or counting terms to avoid inflation
  • Validate and sanitize user-provided names before embedding in queries
  • Page or use query_all when retrieving large result sets to avoid truncation

Example use cases

  • Generate a comprehensive safety profile for a drug combining adverse events, serious event counts, and recent recalls
  • Monitor monthly adverse event trends for a device or drug to detect emergent signals
  • Compare safety metrics for a list of drugs to compute serious-event rates and ranking
  • Cross-reference a device name across adverse event, 510(k), recall, and UDI endpoints for regulatory due diligence
  • Lookup UNII or CAS identifiers and retrieve associated substance relationships for chemical research

FAQ

Do I need an API key?

No—openFDA allows anonymous access, but registering an API key raises daily rate limits and is recommended for heavy use.

How are rate limits handled?

The FDAQuery class includes automatic rate limiting and retry logic, but you should still design queries to respect the documented limits and enable caching.