home / skills / microck / ordinary-claude-skills / excel-analysis
This skill analyzes Excel spreadsheets, creates pivot tables and charts, and generates actionable insights to accelerate data-driven decision making.
npx playbooks add skill microck/ordinary-claude-skills --skill excel-analysisReview the files below or copy the command above to add this skill to your agents.
---
name: Excel Analysis
description: Analyze Excel spreadsheets, create pivot tables, generate charts, and perform data analysis. Use when analyzing Excel files, spreadsheets, tabular data, or .xlsx files.
---
# Excel Analysis
## Quick start
Read Excel files with pandas:
```python
import pandas as pd
# Read Excel file
df = pd.read_excel("data.xlsx", sheet_name="Sheet1")
# Display first few rows
print(df.head())
# Basic statistics
print(df.describe())
```
## Reading multiple sheets
Process all sheets in a workbook:
```python
import pandas as pd
# Read all sheets
excel_file = pd.ExcelFile("workbook.xlsx")
for sheet_name in excel_file.sheet_names:
df = pd.read_excel(excel_file, sheet_name=sheet_name)
print(f"\n{sheet_name}:")
print(df.head())
```
## Data analysis
Perform common analysis tasks:
```python
import pandas as pd
df = pd.read_excel("sales.xlsx")
# Group by and aggregate
sales_by_region = df.groupby("region")["sales"].sum()
print(sales_by_region)
# Filter data
high_sales = df[df["sales"] > 10000]
# Calculate metrics
df["profit_margin"] = (df["revenue"] - df["cost"]) / df["revenue"]
# Sort by column
df_sorted = df.sort_values("sales", ascending=False)
```
## Creating Excel files
Write data to Excel with formatting:
```python
import pandas as pd
df = pd.DataFrame({
"Product": ["A", "B", "C"],
"Sales": [100, 200, 150],
"Profit": [20, 40, 30]
})
# Write to Excel
writer = pd.ExcelWriter("output.xlsx", engine="openpyxl")
df.to_excel(writer, sheet_name="Sales", index=False)
# Get worksheet for formatting
worksheet = writer.sheets["Sales"]
# Auto-adjust column widths
for column in worksheet.columns:
max_length = 0
column_letter = column[0].column_letter
for cell in column:
if len(str(cell.value)) > max_length:
max_length = len(str(cell.value))
worksheet.column_dimensions[column_letter].width = max_length + 2
writer.close()
```
## Pivot tables
Create pivot tables programmatically:
```python
import pandas as pd
df = pd.read_excel("sales_data.xlsx")
# Create pivot table
pivot = pd.pivot_table(
df,
values="sales",
index="region",
columns="product",
aggfunc="sum",
fill_value=0
)
print(pivot)
# Save pivot table
pivot.to_excel("pivot_report.xlsx")
```
## Charts and visualization
Generate charts from Excel data:
```python
import pandas as pd
import matplotlib.pyplot as plt
df = pd.read_excel("data.xlsx")
# Create bar chart
df.plot(x="category", y="value", kind="bar")
plt.title("Sales by Category")
plt.xlabel("Category")
plt.ylabel("Sales")
plt.tight_layout()
plt.savefig("chart.png")
# Create pie chart
df.set_index("category")["value"].plot(kind="pie", autopct="%1.1f%%")
plt.title("Market Share")
plt.ylabel("")
plt.savefig("pie_chart.png")
```
## Data cleaning
Clean and prepare Excel data:
```python
import pandas as pd
df = pd.read_excel("messy_data.xlsx")
# Remove duplicates
df = df.drop_duplicates()
# Handle missing values
df = df.fillna(0) # or df.dropna()
# Remove whitespace
df["name"] = df["name"].str.strip()
# Convert data types
df["date"] = pd.to_datetime(df["date"])
df["amount"] = pd.to_numeric(df["amount"], errors="coerce")
# Save cleaned data
df.to_excel("cleaned_data.xlsx", index=False)
```
## Merging and joining
Combine multiple Excel files:
```python
import pandas as pd
# Read multiple files
df1 = pd.read_excel("sales_q1.xlsx")
df2 = pd.read_excel("sales_q2.xlsx")
# Concatenate vertically
combined = pd.concat([df1, df2], ignore_index=True)
# Merge on common column
customers = pd.read_excel("customers.xlsx")
sales = pd.read_excel("sales.xlsx")
merged = pd.merge(sales, customers, on="customer_id", how="left")
merged.to_excel("merged_data.xlsx", index=False)
```
## Advanced formatting
Apply conditional formatting and styles:
```python
import pandas as pd
from openpyxl import load_workbook
from openpyxl.styles import PatternFill, Font
# Create Excel file
df = pd.DataFrame({
"Product": ["A", "B", "C"],
"Sales": [100, 200, 150]
})
df.to_excel("formatted.xlsx", index=False)
# Load workbook for formatting
wb = load_workbook("formatted.xlsx")
ws = wb.active
# Apply conditional formatting
red_fill = PatternFill(start_color="FF0000", end_color="FF0000", fill_type="solid")
green_fill = PatternFill(start_color="00FF00", end_color="00FF00", fill_type="solid")
for row in range(2, len(df) + 2):
cell = ws[f"B{row}"]
if cell.value < 150:
cell.fill = red_fill
else:
cell.fill = green_fill
# Bold headers
for cell in ws[1]:
cell.font = Font(bold=True)
wb.save("formatted.xlsx")
```
## Performance tips
- Use `read_excel` with `usecols` to read specific columns only
- Use `chunksize` for very large files
- Consider using `engine='openpyxl'` or `engine='xlrd'` based on file type
- Use `dtype` parameter to specify column types for faster reading
## Available packages
- **pandas** - Data analysis and manipulation (primary)
- **openpyxl** - Excel file creation and formatting
- **xlrd** - Reading older .xls files
- **xlsxwriter** - Advanced Excel writing capabilities
- **matplotlib** - Chart generation
This skill analyzes Excel spreadsheets, creates pivot tables, generates charts, and performs common data-cleaning and transformation tasks. It uses pandas for reading and manipulating .xlsx files and integrates openpyxl, xlsxwriter, and matplotlib for formatting and visualization. The skill is designed to turn raw tabular data into summarized reports, charts, and formatted Excel outputs. It supports multi-sheet workbooks, merging files, and performance options for large datasets.
The skill reads Excel workbooks into pandas DataFrames, optionally loading specific sheets or columns to save memory. It performs grouping, aggregation, filtering, joins, and pivot table creation using pandas functions, then writes results back to Excel with optional formatting via openpyxl or xlsxwriter. Charts are generated with matplotlib and saved as image files or embedded into workbooks. It also provides data-cleaning helpers for duplicates, missing values, type conversion, and whitespace trimming.
Which Python packages are required?
pandas is primary; use openpyxl or xlsxwriter for writing/formatting, xlrd for older .xls, and matplotlib for charts.
How do I handle very large Excel files?
Read specific columns with usecols, use chunksize to iterate in pieces, and set dtype to reduce memory; consider pre-filtering in Excel if possible.