home / skills / microck / ordinary-claude-skills / defense-in-depth
This skill enforces defense-in-depth validation to catch invalid data at every layer, making bugs structurally impossible.
npx playbooks add skill microck/ordinary-claude-skills --skill defense-in-depthReview the files below or copy the command above to add this skill to your agents.
---
name: defense-in-depth
description: Use when invalid data causes failures deep in execution, requiring validation at multiple system layers - validates at every layer data passes through to make bugs structurally impossible
---
# Defense-in-Depth Validation
## Overview
When you fix a bug caused by invalid data, adding validation at one place feels sufficient. But that single check can be bypassed by different code paths, refactoring, or mocks.
**Core principle:** Validate at EVERY layer data passes through. Make the bug structurally impossible.
## Why Multiple Layers
Single validation: "We fixed the bug"
Multiple layers: "We made the bug impossible"
Different layers catch different cases:
- Entry validation catches most bugs
- Business logic catches edge cases
- Environment guards prevent context-specific dangers
- Debug logging helps when other layers fail
## The Four Layers
### Layer 1: Entry Point Validation
**Purpose:** Reject obviously invalid input at API boundary
```typescript
function createProject(name: string, workingDirectory: string) {
if (!workingDirectory || workingDirectory.trim() === '') {
throw new Error('workingDirectory cannot be empty');
}
if (!existsSync(workingDirectory)) {
throw new Error(`workingDirectory does not exist: ${workingDirectory}`);
}
if (!statSync(workingDirectory).isDirectory()) {
throw new Error(`workingDirectory is not a directory: ${workingDirectory}`);
}
// ... proceed
}
```
### Layer 2: Business Logic Validation
**Purpose:** Ensure data makes sense for this operation
```typescript
function initializeWorkspace(projectDir: string, sessionId: string) {
if (!projectDir) {
throw new Error('projectDir required for workspace initialization');
}
// ... proceed
}
```
### Layer 3: Environment Guards
**Purpose:** Prevent dangerous operations in specific contexts
```typescript
async function gitInit(directory: string) {
// In tests, refuse git init outside temp directories
if (process.env.NODE_ENV === 'test') {
const normalized = normalize(resolve(directory));
const tmpDir = normalize(resolve(tmpdir()));
if (!normalized.startsWith(tmpDir)) {
throw new Error(
`Refusing git init outside temp dir during tests: ${directory}`
);
}
}
// ... proceed
}
```
### Layer 4: Debug Instrumentation
**Purpose:** Capture context for forensics
```typescript
async function gitInit(directory: string) {
const stack = new Error().stack;
logger.debug('About to git init', {
directory,
cwd: process.cwd(),
stack,
});
// ... proceed
}
```
## Applying the Pattern
When you find a bug:
1. **Trace the data flow** - Where does bad value originate? Where used?
2. **Map all checkpoints** - List every point data passes through
3. **Add validation at each layer** - Entry, business, environment, debug
4. **Test each layer** - Try to bypass layer 1, verify layer 2 catches it
## Example from Session
Bug: Empty `projectDir` caused `git init` in source code
**Data flow:**
1. Test setup → empty string
2. `Project.create(name, '')`
3. `WorkspaceManager.createWorkspace('')`
4. `git init` runs in `process.cwd()`
**Four layers added:**
- Layer 1: `Project.create()` validates not empty/exists/writable
- Layer 2: `WorkspaceManager` validates projectDir not empty
- Layer 3: `WorktreeManager` refuses git init outside tmpdir in tests
- Layer 4: Stack trace logging before git init
**Result:** All 1847 tests passed, bug impossible to reproduce
## Key Insight
All four layers were necessary. During testing, each layer caught bugs the others missed:
- Different code paths bypassed entry validation
- Mocks bypassed business logic checks
- Edge cases on different platforms needed environment guards
- Debug logging identified structural misuse
**Don't stop at one validation point.** Add checks at every layer.
This skill enforces defense-in-depth validation: add checks at every layer data passes through so invalid input cannot reach dangerous operations. It helps turn intermittent bugs caused by unexpected values into structurally impossible failures by combining entry validation, business logic checks, environment guards, and debug instrumentation.
The skill inspects data flows and inserts validation at four layers: API/entry boundaries, business logic, environment-specific guards, and debug instrumentation. It provides patterns and example checks so each layer rejects or contains invalid values before they reach deep execution paths like file operations or external commands.
How many layers of validation are enough?
Use at least the four layers: entry, business logic, environment guards, and debug instrumentation; add more where domain rules require it.
Will this slow systems down?
Simple sanity checks and conditional debug logging have negligible cost; keep heavy checks optional or gated by debug/testing flags.
Can tests still bypass checks?
Tests can bypass a given layer, which is why multiple layers are required: later guards and environment checks catch bypasses and make the bug impossible to reproduce.