home / skills / microck / ordinary-claude-skills / data-transform

data-transform skill

/skills_all/data-transform

This skill enables local data transformation using pandas and numpy to clean, reshape, normalize, and feature-engineer datasets across providers.

This is most likely a fork of the data-transform skill from starlitnightly
npx playbooks add skill microck/ordinary-claude-skills --skill data-transform

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
16.6 KB
---
name: data-transform
title: Data Transformation (Universal)
description: Transform, clean, reshape, and preprocess data using pandas and numpy. Works with ANY LLM provider (GPT, Gemini, Claude, etc.).
---

# Data Transformation (Universal)

## Overview
This skill enables you to perform comprehensive data transformations including cleaning, normalization, reshaping, filtering, and feature engineering. Unlike cloud-hosted solutions, this skill uses standard Python data manipulation libraries (**pandas**, **numpy**, **sklearn**) and executes **locally** in your environment, making it compatible with **ALL LLM providers** including GPT, Gemini, Claude, DeepSeek, and Qwen.

## When to Use This Skill
- Clean and preprocess raw data
- Normalize or scale numeric features
- Reshape data between wide and long formats
- Handle missing values
- Filter and subset datasets
- Merge multiple datasets
- Create new features from existing ones
- Convert data types and formats

## How to Use

### Step 1: Import Required Libraries
```python
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, MinMaxScaler, RobustScaler
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
import warnings
warnings.filterwarnings('ignore')
```

### Step 2: Data Cleaning
```python
# Load data
df = pd.read_csv('data.csv')

# Check for missing values
print("Missing values per column:")
print(df.isnull().sum())

# Remove duplicates
df_clean = df.drop_duplicates()
print(f"Removed {len(df) - len(df_clean)} duplicate rows")

# Remove rows with any missing values
df_clean = df_clean.dropna()

# Or fill missing values
df_clean = df.copy()
df_clean['numeric_col'] = df_clean['numeric_col'].fillna(df_clean['numeric_col'].median())
df_clean['categorical_col'] = df_clean['categorical_col'].fillna('Unknown')

# Remove outliers using IQR method
def remove_outliers(df, column, multiplier=1.5):
    Q1 = df[column].quantile(0.25)
    Q3 = df[column].quantile(0.75)
    IQR = Q3 - Q1
    lower_bound = Q1 - multiplier * IQR
    upper_bound = Q3 + multiplier * IQR
    return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)]

df_clean = remove_outliers(df_clean, 'expression_level')
print(f"✅ Data cleaned: {len(df_clean)} rows remaining")
```

### Step 3: Normalization and Scaling
```python
# Select numeric columns
numeric_cols = df.select_dtypes(include=[np.number]).columns

# Method 1: Z-score normalization (StandardScaler)
scaler = StandardScaler()
df_normalized = df.copy()
df_normalized[numeric_cols] = scaler.fit_transform(df[numeric_cols])

print("Z-score normalized (mean=0, std=1)")
print(df_normalized[numeric_cols].describe())

# Method 2: Min-Max scaling (0-1 range)
scaler_minmax = MinMaxScaler()
df_scaled = df.copy()
df_scaled[numeric_cols] = scaler_minmax.fit_transform(df[numeric_cols])

print("\nMin-Max scaled (range 0-1)")
print(df_scaled[numeric_cols].describe())

# Method 3: Robust scaling (resistant to outliers)
scaler_robust = RobustScaler()
df_robust = df.copy()
df_robust[numeric_cols] = scaler_robust.fit_transform(df[numeric_cols])

print("\nRobust scaled (median=0, IQR=1)")
print(df_robust[numeric_cols].describe())

# Method 4: Log transformation
df_log = df.copy()
df_log['log_expression'] = np.log1p(df_log['expression'])  # log1p(x) = log(1+x)

print("✅ Data normalized and scaled")
```

### Step 4: Data Reshaping
```python
# Convert wide format to long format (melt)
# Wide format: columns are different conditions/samples
# Long format: one column for variable, one for value

df_wide = pd.DataFrame({
    'gene': ['GENE1', 'GENE2', 'GENE3'],
    'sample_A': [10, 20, 15],
    'sample_B': [12, 18, 14],
    'sample_C': [11, 22, 16]
})

df_long = df_wide.melt(
    id_vars=['gene'],
    var_name='sample',
    value_name='expression'
)

print("Long format:")
print(df_long)

# Convert long format to wide format (pivot)
df_wide_reconstructed = df_long.pivot(
    index='gene',
    columns='sample',
    values='expression'
)

print("\nWide format (reconstructed):")
print(df_wide_reconstructed)

# Pivot table with aggregation
df_pivot = df_long.pivot_table(
    index='gene',
    columns='sample',
    values='expression',
    aggfunc='mean'  # Can use sum, median, etc.
)

print("✅ Data reshaped")
```

### Step 5: Filtering and Subsetting
```python
# Filter rows by condition
high_expression = df[df['expression'] > 100]

# Multiple conditions (AND)
filtered = df[(df['expression'] > 50) & (df['qvalue'] < 0.05)]

# Multiple conditions (OR)
filtered = df[(df['celltype'] == 'T cell') | (df['celltype'] == 'B cell')]

# Filter by list of values
selected_genes = ['GENE1', 'GENE2', 'GENE3']
filtered = df[df['gene'].isin(selected_genes)]

# Filter by string pattern
filtered = df[df['gene'].str.startswith('MT-')]  # Mitochondrial genes

# Select specific columns
selected_cols = df[['gene', 'log2FC', 'pvalue', 'qvalue']]

# Select columns by pattern
numeric_cols = df.select_dtypes(include=[np.number])
categorical_cols = df.select_dtypes(include=['object', 'category'])

# Sample random rows
df_sample = df.sample(n=1000, random_state=42)  # 1000 random rows
df_sample_frac = df.sample(frac=0.1, random_state=42)  # 10% of rows

# Top N rows
top_genes = df.nlargest(10, 'expression')
bottom_genes = df.nsmallest(10, 'pvalue')

print(f"✅ Filtered dataset: {len(filtered)} rows")
```

### Step 6: Merging and Joining Datasets
```python
# Inner join (only matching rows)
merged = pd.merge(df1, df2, on='gene', how='inner')

# Left join (all rows from df1)
merged = pd.merge(df1, df2, on='gene', how='left')

# Outer join (all rows from both)
merged = pd.merge(df1, df2, on='gene', how='outer')

# Join on multiple columns
merged = pd.merge(df1, df2, on=['gene', 'sample'], how='inner')

# Join on different column names
merged = pd.merge(
    df1, df2,
    left_on='gene_name',
    right_on='gene_id',
    how='inner'
)

# Concatenate vertically (stack DataFrames)
combined = pd.concat([df1, df2], axis=0, ignore_index=True)

# Concatenate horizontally (side-by-side)
combined = pd.concat([df1, df2], axis=1)

print(f"✅ Merged datasets: {len(merged)} rows")
```

## Advanced Features

### Handling Missing Values
```python
# Check missing value patterns
missing_summary = pd.DataFrame({
    'column': df.columns,
    'missing_count': df.isnull().sum(),
    'missing_percent': (df.isnull().sum() / len(df) * 100).round(2)
})

print("Missing value summary:")
print(missing_summary[missing_summary['missing_count'] > 0])

# Strategy 1: Fill with statistical measures
df_filled = df.copy()
df_filled['numeric_col'].fillna(df_filled['numeric_col'].median(), inplace=True)
df_filled['categorical_col'].fillna(df_filled['categorical_col'].mode()[0], inplace=True)

# Strategy 2: Forward fill (use previous value)
df_filled = df.fillna(method='ffill')

# Strategy 3: Interpolation (for time-series)
df_filled = df.copy()
df_filled['expression'] = df_filled['expression'].interpolate(method='linear')

# Strategy 4: Drop columns with too many missing values
threshold = 0.5  # Drop if >50% missing
df_cleaned = df.dropna(thresh=len(df) * threshold, axis=1)

print("✅ Missing values handled")
```

### Feature Engineering
```python
# Create new features from existing ones

# 1. Binning continuous variables
df['expression_category'] = pd.cut(
    df['expression'],
    bins=[0, 10, 50, 100, np.inf],
    labels=['Very Low', 'Low', 'Medium', 'High']
)

# 2. Create ratio features
df['gene_to_umi_ratio'] = df['n_genes'] / df['n_counts']

# 3. Create interaction features
df['interaction'] = df['feature1'] * df['feature2']

# 4. Extract datetime features
df['date'] = pd.to_datetime(df['timestamp'])
df['year'] = df['date'].dt.year
df['month'] = df['date'].dt.month
df['day_of_week'] = df['date'].dt.dayofweek

# 5. One-hot encoding for categorical variables
df_encoded = pd.get_dummies(df, columns=['celltype', 'condition'], prefix=['cell', 'cond'])

# 6. Label encoding (ordinal)
le = LabelEncoder()
df['celltype_encoded'] = le.fit_transform(df['celltype'])

# 7. Create polynomial features
df['expression_squared'] = df['expression'] ** 2
df['expression_cubed'] = df['expression'] ** 3

# 8. Create lag features (time-series)
df['expression_lag1'] = df.groupby('gene')['expression'].shift(1)
df['expression_lag2'] = df.groupby('gene')['expression'].shift(2)

print("✅ New features created")
```

### Grouping and Aggregation
```python
# Group by single column and aggregate
cluster_stats = df.groupby('cluster').agg({
    'expression': ['mean', 'median', 'std', 'count'],
    'n_genes': 'mean',
    'n_counts': 'sum'
})

print("Cluster statistics:")
print(cluster_stats)

# Group by multiple columns
stats = df.groupby(['cluster', 'celltype']).agg({
    'expression': 'mean',
    'qvalue': lambda x: (x < 0.05).sum()  # Count significant
})

# Apply custom function
def custom_stats(group):
    return pd.Series({
        'mean_expr': group['expression'].mean(),
        'cv': group['expression'].std() / group['expression'].mean(),  # Coefficient of variation
        'n_cells': len(group)
    })

cluster_custom = df.groupby('cluster').apply(custom_stats)

print("✅ Data aggregated")
```

### Data Type Conversions
```python
# Convert column to different type
df['cluster'] = df['cluster'].astype(str)
df['expression'] = df['expression'].astype(float)
df['significant'] = df['significant'].astype(bool)

# Convert to categorical (saves memory)
df['celltype'] = df['celltype'].astype('category')

# Parse dates
df['date'] = pd.to_datetime(df['date_string'], format='%Y-%m-%d')

# Convert numeric to categorical
df['expression_level'] = pd.cut(df['expression'], bins=3, labels=['Low', 'Medium', 'High'])

# String operations
df['gene_upper'] = df['gene'].str.upper()
df['is_mitochondrial'] = df['gene'].str.startswith('MT-')

print("✅ Data types converted")
```

## Common Use Cases

### AnnData to DataFrame Conversion
```python
# Convert AnnData .obs (cell metadata) to DataFrame
df_cells = adata.obs.copy()

# Convert .var (gene metadata) to DataFrame
df_genes = adata.var.copy()

# Extract expression matrix to DataFrame
# Warning: This can be memory-intensive for large datasets
df_expression = pd.DataFrame(
    adata.X.toarray() if hasattr(adata.X, 'toarray') else adata.X,
    index=adata.obs_names,
    columns=adata.var_names
)

# Extract specific layer
if 'normalized' in adata.layers:
    df_normalized = pd.DataFrame(
        adata.layers['normalized'],
        index=adata.obs_names,
        columns=adata.var_names
    )

print("✅ AnnData converted to DataFrames")
```

### Gene Expression Matrix Transformation
```python
# Transpose: genes as rows, cells as columns → cells as rows, genes as columns
df_transposed = df.T

# Log-transform gene expression
df_log = np.log1p(df)  # log1p(x) = log(1+x), avoids log(0)

# Z-score normalize per gene (across cells)
df_zscore = df.apply(lambda x: (x - x.mean()) / x.std(), axis=1)

# Scale per cell (divide by library size)
library_sizes = df.sum(axis=1)
df_normalized = df.div(library_sizes, axis=0) * 1e6  # CPM normalization

# Filter low-expressed genes
min_cells = 10  # Gene must be expressed in at least 10 cells
gene_mask = (df > 0).sum(axis=0) >= min_cells
df_filtered = df.loc[:, gene_mask]

print(f"✅ Filtered to {df_filtered.shape[1]} genes")
```

### Differential Expression Results Processing
```python
# Assuming deg_df has columns: gene, log2FC, pvalue, qvalue

# Add significance labels
deg_df['regulation'] = 'Not Significant'
deg_df.loc[(deg_df['log2FC'] > 1) & (deg_df['qvalue'] < 0.05), 'regulation'] = 'Up-regulated'
deg_df.loc[(deg_df['log2FC'] < -1) & (deg_df['qvalue'] < 0.05), 'regulation'] = 'Down-regulated'

# Sort by significance
deg_df_sorted = deg_df.sort_values('qvalue')

# Top upregulated genes
top_up = deg_df[deg_df['regulation'] == 'Up-regulated'].nlargest(20, 'log2FC')

# Top downregulated genes
top_down = deg_df[deg_df['regulation'] == 'Down-regulated'].nsmallest(20, 'log2FC')

# Create summary table
summary = deg_df.groupby('regulation').agg({
    'gene': 'count',
    'log2FC': ['mean', 'median'],
    'qvalue': 'min'
})

print("DEG Summary:")
print(summary)

# Export results
deg_df_sorted.to_csv('deg_results_processed.csv', index=False)
print("✅ DEG results processed and saved")
```

### Batch Processing Multiple Files
```python
import glob

# Find all CSV files
file_paths = glob.glob('data/*.csv')

# Read and combine
dfs = []
for file_path in file_paths:
    df = pd.read_csv(file_path)
    # Add source file as column
    df['source_file'] = file_path.split('/')[-1]
    dfs.append(df)

# Combine all
df_combined = pd.concat(dfs, ignore_index=True)

print(f"✅ Processed {len(file_paths)} files, total {len(df_combined)} rows")
```

## Best Practices

1. **Check Data First**: Always use `df.head()`, `df.info()`, `df.describe()` to understand data
2. **Copy Before Modify**: Use `df.copy()` to avoid modifying original data
3. **Chain Operations**: Use method chaining for readability: `df.dropna().drop_duplicates().reset_index(drop=True)`
4. **Index Management**: Reset index after filtering: `df.reset_index(drop=True)`
5. **Memory Efficiency**: Use categorical dtype for low-cardinality string columns
6. **Vectorization**: Avoid loops; use vectorized operations (numpy, pandas built-ins)
7. **Documentation**: Comment complex transformations
8. **Validation**: Check data after each major transformation

## Troubleshooting

### Issue: "SettingWithCopyWarning"
**Solution**: Use `.copy()` to create explicit copy
```python
df_subset = df[df['expression'] > 10].copy()
df_subset['new_col'] = values  # No warning
```

### Issue: "Memory error with large datasets"
**Solution**: Process in chunks
```python
chunk_size = 10000
chunks = []
for chunk in pd.read_csv('large_file.csv', chunksize=chunk_size):
    # Process chunk
    processed = chunk[chunk['expression'] > 0]
    chunks.append(processed)

df = pd.concat(chunks, ignore_index=True)
```

### Issue: "Key error when merging"
**Solution**: Check column names and presence
```python
print("Columns in df1:", df1.columns.tolist())
print("Columns in df2:", df2.columns.tolist())

# Use left_on/right_on if names differ
merged = pd.merge(df1, df2, left_on='gene_name', right_on='gene_id')
```

### Issue: "Data types mismatch in merge"
**Solution**: Ensure consistent types
```python
df1['gene'] = df1['gene'].astype(str)
df2['gene'] = df2['gene'].astype(str)
merged = pd.merge(df1, df2, on='gene')
```

### Issue: "Index alignment errors"
**Solution**: Reset index or specify `ignore_index=True`
```python
df_combined = pd.concat([df1, df2], ignore_index=True)
```

## Critical API Reference - DataFrame vs Series Attributes

### IMPORTANT: `.dtype` vs `.dtypes` - Common Pitfall!

**CORRECT usage:**
```python
# For DataFrame - use .dtypes (PLURAL) to get all column types
df.dtypes  # Returns Series with column names as index, dtypes as values

# For a single column (Series) - use .dtype (SINGULAR)
df['column_name'].dtype  # Returns single dtype object

# Check specific column type
if df['expression'].dtype == 'float64':
    print("Expression is float64")

# Check all column types
print(df.dtypes)  # Shows dtype for each column
```

**WRONG - DO NOT USE:**
```python
# WRONG! DataFrame does NOT have .dtype (singular)
# df.dtype  # AttributeError: 'DataFrame' object has no attribute 'dtype'

# WRONG! This will fail
# if df.dtype == 'float64':  # ERROR!
```

### DataFrame Type Inspection Methods

```python
# Get dtypes for all columns
df.dtypes

# Get detailed info including dtypes
df.info()

# Check if column is numeric
pd.api.types.is_numeric_dtype(df['column'])

# Check if column is categorical
pd.api.types.is_categorical_dtype(df['column'])

# Select columns by dtype
numeric_cols = df.select_dtypes(include=['number'])
string_cols = df.select_dtypes(include=['object', 'string'])
```

### Series vs DataFrame - Key Differences

| Attribute/Method | Series | DataFrame |
|-----------------|--------|-----------|
| `.dtype` | ✅ Returns single dtype | ❌ AttributeError |
| `.dtypes` | ❌ AttributeError | ✅ Returns Series of dtypes |
| `.shape` | `(n,)` tuple | `(n, m)` tuple |
| `.values` | 1D array | 2D array |

## Technical Notes

- **Libraries**: Uses `pandas` (1.x+), `numpy`, `scikit-learn` (widely supported)
- **Execution**: Runs locally in the agent's sandbox
- **Compatibility**: Works with ALL LLM providers (GPT, Gemini, Claude, DeepSeek, Qwen, etc.)
- **Performance**: Pandas is optimized with C backend; most operations are fast for <1M rows
- **Memory**: Pandas DataFrames store data in memory; use chunking for very large files
- **Precision**: Numeric operations use float64 by default (can use float32 to save memory)

## References
- pandas documentation: https://pandas.pydata.org/docs/
- pandas user guide: https://pandas.pydata.org/docs/user_guide/index.html
- scikit-learn preprocessing: https://scikit-learn.org/stable/modules/preprocessing.html
- pandas cheat sheet: https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

Overview

This skill provides a practical toolkit for transforming, cleaning, reshaping, and preprocessing tabular data using pandas, numpy, and common sklearn utilities. It runs locally in your environment and is compatible with any LLM provider, enabling deterministic data preparation workflows before modeling or analysis. The focus is on reliable, repeatable steps that handle missing data, outliers, scaling, and feature engineering.

How this skill works

The skill inspects dataframes to detect missing values, data types, and distributional issues, then applies transformations such as dropping or imputing missing values, removing duplicates and outliers, scaling or normalizing numeric features, and reshaping between wide/long formats. It also supports merges, concatenation, group aggregations, and feature engineering (binning, ratios, interactions, encoding, datetime extraction). Utility patterns for chunked reading and memory-aware operations are included for large files.

When to use it

  • Preparing raw CSV or AnnData output for analysis or modeling
  • Cleaning datasets with missing values, duplicates, or outliers
  • Normalizing or scaling features before machine learning
  • Reshaping tables between wide and long formats for plotting or stats
  • Merging multiple tables or batch-processing many files

Best practices

  • Inspect data first with head(), info(), and describe() before changing it
  • Work on df.copy() to avoid unintended in-place modifications
  • Prefer vectorized pandas/numpy operations over Python loops for speed
  • Use categorical dtype for low-cardinality strings to save memory
  • Reset index after heavy filtering and validate results at each step

Example use cases

  • Convert AnnData objects to DataFrames and extract normalized expression matrices
  • Filter low-expressed genes, log-transform and z-score normalize per-gene
  • Process differential expression results: label regulation, sort, and export summaries
  • Merge experimental metadata with measurement tables using left/inner joins
  • Batch-read many CSVs, add source filename, and combine into one cleaned dataset

FAQ

Can I handle very large files without running out of memory?

Yes — read and process files in chunks using pandas.read_csv(..., chunksize=...), apply filtering or aggregation per chunk, and concatenate results. Also consider dtype optimizations and using categorical types.

How do I avoid SettingWithCopyWarning?

Create explicit copies before assigning: subset = df[condition].copy(); then modify subset. This ensures operations affect independent objects and avoids ambiguous chained assignments.