home / skills / microck / ordinary-claude-skills / chembl-database

chembl-database skill

/skills_all/chembl-database

This skill helps medicinal chemists query ChEMBL for bioactive molecules, retrieve activity data, and perform SAR analyses to accelerate drug discovery.

npx playbooks add skill microck/ordinary-claude-skills --skill chembl-database

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
10.0 KB
---
name: chembl-database
description: "Query ChEMBL's bioactive molecules and drug discovery data. Search compounds by structure/properties, retrieve bioactivity data (IC50, Ki), find inhibitors, perform SAR studies, for medicinal chemistry."
---

# ChEMBL Database

## Overview

ChEMBL is a manually curated database of bioactive molecules maintained by the European Bioinformatics Institute (EBI), containing over 2 million compounds, 19 million bioactivity measurements, 13,000+ drug targets, and data on approved drugs and clinical candidates. Access and query this data programmatically using the ChEMBL Python client for drug discovery and medicinal chemistry research.

## When to Use This Skill

This skill should be used when:

- **Compound searches**: Finding molecules by name, structure, or properties
- **Target information**: Retrieving data about proteins, enzymes, or biological targets
- **Bioactivity data**: Querying IC50, Ki, EC50, or other activity measurements
- **Drug information**: Looking up approved drugs, mechanisms, or indications
- **Structure searches**: Performing similarity or substructure searches
- **Cheminformatics**: Analyzing molecular properties and drug-likeness
- **Target-ligand relationships**: Exploring compound-target interactions
- **Drug discovery**: Identifying inhibitors, agonists, or bioactive molecules

## Installation and Setup

### Python Client

The ChEMBL Python client is required for programmatic access:

```bash
uv pip install chembl_webresource_client
```

### Basic Usage Pattern

```python
from chembl_webresource_client.new_client import new_client

# Access different endpoints
molecule = new_client.molecule
target = new_client.target
activity = new_client.activity
drug = new_client.drug
```

## Core Capabilities

### 1. Molecule Queries

**Retrieve by ChEMBL ID:**
```python
molecule = new_client.molecule
aspirin = molecule.get('CHEMBL25')
```

**Search by name:**
```python
results = molecule.filter(pref_name__icontains='aspirin')
```

**Filter by properties:**
```python
# Find small molecules (MW <= 500) with favorable LogP
results = molecule.filter(
    molecule_properties__mw_freebase__lte=500,
    molecule_properties__alogp__lte=5
)
```

### 2. Target Queries

**Retrieve target information:**
```python
target = new_client.target
egfr = target.get('CHEMBL203')
```

**Search for specific target types:**
```python
# Find all kinase targets
kinases = target.filter(
    target_type='SINGLE PROTEIN',
    pref_name__icontains='kinase'
)
```

### 3. Bioactivity Data

**Query activities for a target:**
```python
activity = new_client.activity
# Find potent EGFR inhibitors
results = activity.filter(
    target_chembl_id='CHEMBL203',
    standard_type='IC50',
    standard_value__lte=100,
    standard_units='nM'
)
```

**Get all activities for a compound:**
```python
compound_activities = activity.filter(
    molecule_chembl_id='CHEMBL25',
    pchembl_value__isnull=False
)
```

### 4. Structure-Based Searches

**Similarity search:**
```python
similarity = new_client.similarity
# Find compounds similar to aspirin
similar = similarity.filter(
    smiles='CC(=O)Oc1ccccc1C(=O)O',
    similarity=85  # 85% similarity threshold
)
```

**Substructure search:**
```python
substructure = new_client.substructure
# Find compounds containing benzene ring
results = substructure.filter(smiles='c1ccccc1')
```

### 5. Drug Information

**Retrieve drug data:**
```python
drug = new_client.drug
drug_info = drug.get('CHEMBL25')
```

**Get mechanisms of action:**
```python
mechanism = new_client.mechanism
mechanisms = mechanism.filter(molecule_chembl_id='CHEMBL25')
```

**Query drug indications:**
```python
drug_indication = new_client.drug_indication
indications = drug_indication.filter(molecule_chembl_id='CHEMBL25')
```

## Query Workflow

### Workflow 1: Finding Inhibitors for a Target

1. **Identify the target** by searching by name:
   ```python
   targets = new_client.target.filter(pref_name__icontains='EGFR')
   target_id = targets[0]['target_chembl_id']
   ```

2. **Query bioactivity data** for that target:
   ```python
   activities = new_client.activity.filter(
       target_chembl_id=target_id,
       standard_type='IC50',
       standard_value__lte=100
   )
   ```

3. **Extract compound IDs** and retrieve details:
   ```python
   compound_ids = [act['molecule_chembl_id'] for act in activities]
   compounds = [new_client.molecule.get(cid) for cid in compound_ids]
   ```

### Workflow 2: Analyzing a Known Drug

1. **Get drug information**:
   ```python
   drug_info = new_client.drug.get('CHEMBL1234')
   ```

2. **Retrieve mechanisms**:
   ```python
   mechanisms = new_client.mechanism.filter(molecule_chembl_id='CHEMBL1234')
   ```

3. **Find all bioactivities**:
   ```python
   activities = new_client.activity.filter(molecule_chembl_id='CHEMBL1234')
   ```

### Workflow 3: Structure-Activity Relationship (SAR) Study

1. **Find similar compounds**:
   ```python
   similar = new_client.similarity.filter(smiles='query_smiles', similarity=80)
   ```

2. **Get activities for each compound**:
   ```python
   for compound in similar:
       activities = new_client.activity.filter(
           molecule_chembl_id=compound['molecule_chembl_id']
       )
   ```

3. **Analyze property-activity relationships** using molecular properties from results.

## Filter Operators

ChEMBL supports Django-style query filters:

- `__exact` - Exact match
- `__iexact` - Case-insensitive exact match
- `__contains` / `__icontains` - Substring matching
- `__startswith` / `__endswith` - Prefix/suffix matching
- `__gt`, `__gte`, `__lt`, `__lte` - Numeric comparisons
- `__range` - Value in range
- `__in` - Value in list
- `__isnull` - Null/not null check

## Data Export and Analysis

Convert results to pandas DataFrame for analysis:

```python
import pandas as pd

activities = new_client.activity.filter(target_chembl_id='CHEMBL203')
df = pd.DataFrame(list(activities))

# Analyze results
print(df['standard_value'].describe())
print(df.groupby('standard_type').size())
```

## Performance Optimization

### Caching

The client automatically caches results for 24 hours. Configure caching:

```python
from chembl_webresource_client.settings import Settings

# Disable caching
Settings.Instance().CACHING = False

# Adjust cache expiration (seconds)
Settings.Instance().CACHE_EXPIRE = 86400
```

### Lazy Evaluation

Queries execute only when data is accessed. Convert to list to force execution:

```python
# Query is not executed yet
results = molecule.filter(pref_name__icontains='aspirin')

# Force execution
results_list = list(results)
```

### Pagination

Results are paginated automatically. Iterate through all results:

```python
for activity in new_client.activity.filter(target_chembl_id='CHEMBL203'):
    # Process each activity
    print(activity['molecule_chembl_id'])
```

## Common Use Cases

### Find Kinase Inhibitors

```python
# Identify kinase targets
kinases = new_client.target.filter(
    target_type='SINGLE PROTEIN',
    pref_name__icontains='kinase'
)

# Get potent inhibitors
for kinase in kinases[:5]:  # First 5 kinases
    activities = new_client.activity.filter(
        target_chembl_id=kinase['target_chembl_id'],
        standard_type='IC50',
        standard_value__lte=50
    )
```

### Explore Drug Repurposing

```python
# Get approved drugs
drugs = new_client.drug.filter()

# For each drug, find all targets
for drug in drugs[:10]:
    mechanisms = new_client.mechanism.filter(
        molecule_chembl_id=drug['molecule_chembl_id']
    )
```

### Virtual Screening

```python
# Find compounds with desired properties
candidates = new_client.molecule.filter(
    molecule_properties__mw_freebase__range=[300, 500],
    molecule_properties__alogp__lte=5,
    molecule_properties__hba__lte=10,
    molecule_properties__hbd__lte=5
)
```

## Resources

### scripts/example_queries.py

Ready-to-use Python functions demonstrating common ChEMBL query patterns:

- `get_molecule_info()` - Retrieve molecule details by ID
- `search_molecules_by_name()` - Name-based molecule search
- `find_molecules_by_properties()` - Property-based filtering
- `get_bioactivity_data()` - Query bioactivities for targets
- `find_similar_compounds()` - Similarity searching
- `substructure_search()` - Substructure matching
- `get_drug_info()` - Retrieve drug information
- `find_kinase_inhibitors()` - Specialized kinase inhibitor search
- `export_to_dataframe()` - Convert results to pandas DataFrame

Consult this script for implementation details and usage examples.

### references/api_reference.md

Comprehensive API documentation including:

- Complete endpoint listing (molecule, target, activity, assay, drug, etc.)
- All filter operators and query patterns
- Molecular properties and bioactivity fields
- Advanced query examples
- Configuration and performance tuning
- Error handling and rate limiting

Refer to this document when detailed API information is needed or when troubleshooting queries.

## Important Notes

### Data Reliability

- ChEMBL data is manually curated but may contain inconsistencies
- Always check `data_validity_comment` field in activity records
- Be aware of `potential_duplicate` flags

### Units and Standards

- Bioactivity values use standard units (nM, uM, etc.)
- `pchembl_value` provides normalized activity (-log scale)
- Check `standard_type` to understand measurement type (IC50, Ki, EC50, etc.)

### Rate Limiting

- Respect ChEMBL's fair usage policies
- Use caching to minimize repeated requests
- Consider bulk downloads for large datasets
- Avoid hammering the API with rapid consecutive requests

### Chemical Structure Formats

- SMILES strings are the primary structure format
- InChI keys available for compounds
- SVG images can be generated via the image endpoint

## Additional Resources

- ChEMBL website: https://www.ebi.ac.uk/chembl/
- API documentation: https://www.ebi.ac.uk/chembl/api/data/docs
- Python client GitHub: https://github.com/chembl/chembl_webresource_client
- Interface documentation: https://chembl.gitbook.io/chembl-interface-documentation/
- Example notebooks: https://github.com/chembl/notebooks

Overview

This skill provides programmatic access to the ChEMBL bioactivity database for drug discovery and medicinal chemistry. It lets you search compounds by name, structure, and properties; retrieve target and bioactivity data (IC50, Ki, pChEMBL); and run similarity or substructure searches for SAR and virtual screening tasks.

How this skill works

The skill uses the ChEMBL Python client to query endpoints such as molecule, target, activity, drug, similarity, and substructure. Queries use Django-style filters (e.g., __lte, __icontains) and are lazily evaluated; convert results to lists or pandas DataFrames to force execution and analyze results. Caching and pagination are supported to improve performance on large queries.

When to use it

  • Search for compounds by name, SMILES, or molecular properties (MW, LogP, HBD/HBA).
  • Retrieve bioactivity records (IC50, Ki, EC50) for target-ligand profiling or potency filtering.
  • Identify inhibitors or agonists for a specific protein target and extract compound IDs.
  • Perform similarity or substructure searches to build chemical series for SAR studies.
  • Export query results to pandas for statistical analysis, visualization, or machine learning.

Best practices

  • Use filter operators to narrow queries server-side (__lte, __range, __icontains) and avoid downloading unnecessary records.
  • Convert lazy query objects to lists or DataFrames only after you set filters to force execution once.
  • Enable caching for repeated queries and configure cache expiry to reduce API load.
  • Check data_validity_comment and potential_duplicate flags in activity records before using values.
  • Respect rate limits: batch large requests, use caching, or download bulk datasets for heavy analysis.

Example use cases

  • Find potent EGFR inhibitors: filter activity by target_chembl_id, standard_type=IC50, standard_value<=100 nM and retrieve molecules.
  • Run SAR: get compounds similar to a lead SMILES at >=80% similarity, then fetch activities and molecular properties for trend analysis.
  • Explore drug repurposing: list approved drugs, fetch mechanisms and targets, and inspect off-target activity profiles.
  • Virtual screening prefilter: select candidates by molecular weight, LogP, HBD/HBA limits, then run similarity or docking workflows.

FAQ

What bioactivity units and normalized values are available?

Standard units (nM, uM, etc.) appear in standard_units/standard_value; pChEMBL provides normalized -log10 activity values for easier comparison.

How do I handle paginated results or large queries?

Iterate over the lazy query object to process pages, or convert to a list to fetch all records; for very large datasets, use bulk downloads or apply stronger filters to limit results.