home / skills / microck / ordinary-claude-skills / arboreto

arboreto skill

/skills_all/arboreto

This skill infers gene regulatory networks from expression data using scalable algorithms like GRNBoost2 and GENIE3 to reveal TF-target relationships.

npx playbooks add skill microck/ordinary-claude-skills --skill arboreto

Review the files below or copy the command above to add this skill to your agents.

Files (2)
SKILL.md
6.7 KB
---
name: arboreto
description: Infer gene regulatory networks (GRNs) from gene expression data using scalable algorithms (GRNBoost2, GENIE3). Use when analyzing transcriptomics data (bulk RNA-seq, single-cell RNA-seq) to identify transcription factor-target gene relationships and regulatory interactions. Supports distributed computation for large-scale datasets.
---

# Arboreto

## Overview

Arboreto is a computational library for inferring gene regulatory networks (GRNs) from gene expression data using parallelized algorithms that scale from single machines to multi-node clusters.

**Core capability**: Identify which transcription factors (TFs) regulate which target genes based on expression patterns across observations (cells, samples, conditions).

## Quick Start

Install arboreto:
```bash
uv pip install arboreto
```

Basic GRN inference:
```python
import pandas as pd
from arboreto.algo import grnboost2

if __name__ == '__main__':
    # Load expression data (genes as columns)
    expression_matrix = pd.read_csv('expression_data.tsv', sep='\t')

    # Infer regulatory network
    network = grnboost2(expression_data=expression_matrix)

    # Save results (TF, target, importance)
    network.to_csv('network.tsv', sep='\t', index=False, header=False)
```

**Critical**: Always use `if __name__ == '__main__':` guard because Dask spawns new processes.

## Core Capabilities

### 1. Basic GRN Inference

For standard GRN inference workflows including:
- Input data preparation (Pandas DataFrame or NumPy array)
- Running inference with GRNBoost2 or GENIE3
- Filtering by transcription factors
- Output format and interpretation

**See**: `references/basic_inference.md`

**Use the ready-to-run script**: `scripts/basic_grn_inference.py` for standard inference tasks:
```bash
python scripts/basic_grn_inference.py expression_data.tsv output_network.tsv --tf-file tfs.txt --seed 777
```

### 2. Algorithm Selection

Arboreto provides two algorithms:

**GRNBoost2 (Recommended)**:
- Fast gradient boosting-based inference
- Optimized for large datasets (10k+ observations)
- Default choice for most analyses

**GENIE3**:
- Random Forest-based inference
- Original multiple regression approach
- Use for comparison or validation

Quick comparison:
```python
from arboreto.algo import grnboost2, genie3

# Fast, recommended
network_grnboost = grnboost2(expression_data=matrix)

# Classic algorithm
network_genie3 = genie3(expression_data=matrix)
```

**For detailed algorithm comparison, parameters, and selection guidance**: `references/algorithms.md`

### 3. Distributed Computing

Scale inference from local multi-core to cluster environments:

**Local (default)** - Uses all available cores automatically:
```python
network = grnboost2(expression_data=matrix)
```

**Custom local client** - Control resources:
```python
from distributed import LocalCluster, Client

local_cluster = LocalCluster(n_workers=10, memory_limit='8GB')
client = Client(local_cluster)

network = grnboost2(expression_data=matrix, client_or_address=client)

client.close()
local_cluster.close()
```

**Cluster computing** - Connect to remote Dask scheduler:
```python
from distributed import Client

client = Client('tcp://scheduler:8786')
network = grnboost2(expression_data=matrix, client_or_address=client)
```

**For cluster setup, performance optimization, and large-scale workflows**: `references/distributed_computing.md`

## Installation

```bash
uv pip install arboreto
```

**Dependencies**: scipy, scikit-learn, numpy, pandas, dask, distributed

## Common Use Cases

### Single-Cell RNA-seq Analysis
```python
import pandas as pd
from arboreto.algo import grnboost2

if __name__ == '__main__':
    # Load single-cell expression matrix (cells x genes)
    sc_data = pd.read_csv('scrna_counts.tsv', sep='\t')

    # Infer cell-type-specific regulatory network
    network = grnboost2(expression_data=sc_data, seed=42)

    # Filter high-confidence links
    high_confidence = network[network['importance'] > 0.5]
    high_confidence.to_csv('grn_high_confidence.tsv', sep='\t', index=False)
```

### Bulk RNA-seq with TF Filtering
```python
from arboreto.utils import load_tf_names
from arboreto.algo import grnboost2

if __name__ == '__main__':
    # Load data
    expression_data = pd.read_csv('rnaseq_tpm.tsv', sep='\t')
    tf_names = load_tf_names('human_tfs.txt')

    # Infer with TF restriction
    network = grnboost2(
        expression_data=expression_data,
        tf_names=tf_names,
        seed=123
    )

    network.to_csv('tf_target_network.tsv', sep='\t', index=False)
```

### Comparative Analysis (Multiple Conditions)
```python
from arboreto.algo import grnboost2

if __name__ == '__main__':
    # Infer networks for different conditions
    conditions = ['control', 'treatment_24h', 'treatment_48h']

    for condition in conditions:
        data = pd.read_csv(f'{condition}_expression.tsv', sep='\t')
        network = grnboost2(expression_data=data, seed=42)
        network.to_csv(f'{condition}_network.tsv', sep='\t', index=False)
```

## Output Interpretation

Arboreto returns a DataFrame with regulatory links:

| Column | Description |
|--------|-------------|
| `TF` | Transcription factor (regulator) |
| `target` | Target gene |
| `importance` | Regulatory importance score (higher = stronger) |

**Filtering strategy**:
- Top N links per target gene
- Importance threshold (e.g., > 0.5)
- Statistical significance testing (permutation tests)

## Integration with pySCENIC

Arboreto is a core component of the SCENIC pipeline for single-cell regulatory network analysis:

```python
# Step 1: Use arboreto for GRN inference
from arboreto.algo import grnboost2
network = grnboost2(expression_data=sc_data, tf_names=tf_list)

# Step 2: Use pySCENIC for regulon identification and activity scoring
# (See pySCENIC documentation for downstream analysis)
```

## Reproducibility

Always set a seed for reproducible results:
```python
network = grnboost2(expression_data=matrix, seed=777)
```

Run multiple seeds for robustness analysis:
```python
from distributed import LocalCluster, Client

if __name__ == '__main__':
    client = Client(LocalCluster())

    seeds = [42, 123, 777]
    networks = []

    for seed in seeds:
        net = grnboost2(expression_data=matrix, client_or_address=client, seed=seed)
        networks.append(net)

    # Combine networks and filter consensus links
    consensus = analyze_consensus(networks)
```

## Troubleshooting

**Memory errors**: Reduce dataset size by filtering low-variance genes or use distributed computing

**Slow performance**: Use GRNBoost2 instead of GENIE3, enable distributed client, filter TF list

**Dask errors**: Ensure `if __name__ == '__main__':` guard is present in scripts

**Empty results**: Check data format (genes as columns), verify TF names match gene names

Overview

This skill infers gene regulatory networks (GRNs) from gene expression matrices using scalable algorithms (GRNBoost2 and GENIE3). It identifies transcription factor (TF) → target gene relationships across bulk or single-cell transcriptomics and supports distributed computation for large datasets. Use it to generate ranked regulatory links and feed downstream pipelines like regulon analysis.

How this skill works

The skill accepts expression data as a Pandas DataFrame or NumPy array with genes as columns and observations as rows. It runs GRNBoost2 (fast gradient-boosting) or GENIE3 (random-forest) to score TF-target links and returns a DataFrame with columns TF, target, and importance. For large workloads it can connect to a Dask client or LocalCluster to parallelize tasks across cores or nodes.

When to use it

  • Inferring cell-type or condition-specific regulatory networks from single-cell RNA-seq.
  • Generating TF-target link lists for bulk RNA-seq when testing regulatory hypotheses.
  • Scaling GRN inference to tens of thousands of observations using distributed compute.
  • Comparing algorithms (GRNBoost2 vs GENIE3) for validation or sensitivity analysis.
  • Producing input networks for downstream tools like regulon identification or activity scoring.

Best practices

  • Ensure genes are columns and samples/cells are rows in the input matrix before running inference.
  • Provide a curated TF list to restrict regressors and reduce false positives when available.
  • Always set a random seed for reproducible results and run multiple seeds for consensus networks.
  • Use GRNBoost2 for large datasets; use GENIE3 for method comparison or validation.
  • Wrap script execution in if __name__ == '__main__': when using Dask to avoid worker spawn issues.

Example use cases

  • Single-cell pipeline: infer GRNs per cell type, filter high-importance links, then run regulon scoring.
  • Bulk RNA-seq with TF filtering: restrict regressors to known TFs to produce focused TF→target networks.
  • Comparative analysis: infer networks for multiple timepoints or treatments and compare conserved links.
  • Large-scale inference: connect to a Dask cluster to run GRNBoost2 on tens of thousands of observations.

FAQ

Which algorithm should I choose: GRNBoost2 or GENIE3?

Use GRNBoost2 as the default for speed and scalability; run GENIE3 for comparison or validation if compute allows.

How do I improve performance on very large datasets?

Filter low-variance genes or restrict to a TF list, and run with a Dask client or LocalCluster to distribute work.