home / skills / martinffx / claude-code-atelier / atelier-python-architecture
This skill guides Python application architecture with functional core and domain-driven design, promoting clean boundaries, robust data modeling, and testable
npx playbooks add skill martinffx/claude-code-atelier --skill atelier-python-architectureReview the files below or copy the command above to add this skill to your agents.
---
name: python:architecture
description: Python application architecture with functional core, effectful shell, DDD, and data modeling. Use when designing application layers, separating pure business logic from IO, defining domain models, implementing validation, or structuring bounded contexts.
user-invocable: false
---
# Python Application Architecture
Modern Python application architecture following functional core / imperative shell pattern, Domain-Driven Design, and type-safe data modeling.
## Core Principle: Functional Core / Imperative Shell
Separate pure business logic from side effects:
- **Functional Core**: Pure functions, business logic, no IO
- **Imperative Shell**: Coordinates external dependencies, handles side effects
See [references/functional-core.md](references/functional-core.md) for detailed patterns and examples.
## Layered Architecture
Follow bottom-up dependency flow:
```
Router/Handler → Service → Repository → Entity → Database
```
Each layer depends only on layers below.
**Responsibilities:**
- **Entity**: Domain models, validation, business rules, data transformations (fromRequest, toRecord, toResponse)
- **Repository**: Abstract storage interface, returns domain entities
- **Service**: Business workflows, orchestrates entities and repositories
- **Router/Handler**: HTTP handling, delegates to services
## Domain Models
### Entity Example
```python
from dataclasses import dataclass
from uuid import UUID
from decimal import Decimal
@dataclass
class Order:
"""Entity - has identity and encapsulated behavior"""
id: UUID
customer_id: UUID
total: Decimal
status: str
def apply_discount(self, rate: Decimal) -> None:
"""Business rule - encapsulated in entity"""
if self.status == "pending":
self.total = self.total * (1 - rate)
@classmethod
def from_request(cls, req, customer_id: UUID) -> "Order":
"""Transform API request → entity"""
return cls(id=uuid4(), customer_id=customer_id, total=Decimal("0"), status="pending")
def to_response(self):
"""Transform entity → API response"""
return {"id": self.id, "total": self.total, "status": self.status}
```
### Value Object Example
```python
from dataclasses import dataclass
@dataclass(frozen=True)
class Money:
"""Value object - immutable, no identity"""
amount: Decimal
currency: str
def add(self, other: "Money") -> "Money":
if self.currency != other.currency:
raise ValueError("Cannot add different currencies")
return Money(self.amount + other.amount, self.currency)
```
See [references/ddd.md](references/ddd.md) for aggregates, bounded contexts, and domain services.
## Repository Pattern
Abstract storage behind interface:
```python
from abc import ABC, abstractmethod
from typing import Optional
class OrderRepository(ABC):
"""Abstract repository - interface only"""
@abstractmethod
def get(self, order_id: UUID) -> Optional[Order]:
pass
@abstractmethod
def save(self, order: Order) -> None:
pass
class PostgresOrderRepository(OrderRepository):
"""Concrete implementation"""
def get(self, order_id: UUID) -> Optional[Order]:
record = self.session.get(OrderRecord, order_id)
return Order.from_record(record) if record else None
def save(self, order: Order) -> None:
record = order.to_record()
self.session.merge(record)
self.session.commit()
```
## Data Modeling
- **dataclasses**: Domain models and internal logic (lightweight, standard library)
- **Pydantic**: API boundaries (validation, JSON schema, OpenAPI)
- **Entity transformations**: `from_request()`, `to_response()`, `from_record()`, `to_record()`
See [references/data-modeling.md](references/data-modeling.md) for validation patterns, Pydantic features, and transformation examples.
## Best Practices
1. **Pure functions first** - Write business logic without IO dependencies
2. **Entity encapsulation** - Keep business rules inside entities
3. **Repository abstraction** - Hide storage details, work with domain entities
4. **Validate at boundaries** - Use Pydantic at API edges, simple validation in entities
5. **Immutable value objects** - Always use `frozen=True`
6. **Single Responsibility** - Each layer has one reason to change
7. **Dependency direction** - Always depend on abstractions, not implementations
## Anti-Patterns
❌ **Anemic Domain Model** - Entities with only getters/setters, all logic in services
❌ **Transaction Script** - All logic in service layer, entities just data
❌ **Leaky Abstraction** - Repository exposing database details
❌ **God Object** - Entity with too many responsibilities
❌ **Mixed Concerns** - Business logic calling IO directly
For detailed examples, patterns, and decision trees, see the reference materials:
- [references/functional-core.md](references/functional-core.md) - Core vs shell separation
- [references/ddd.md](references/ddd.md) - DDD patterns, aggregates, bounded contexts
- [references/data-modeling.md](references/data-modeling.md) - dataclasses, Pydantic, transformations
This skill codifies a Python application architecture that separates a functional core from an imperative shell, applies Domain-Driven Design, and promotes type-safe data modeling. It provides concrete layer responsibilities, entity/value-object patterns, repository abstractions, and guidance for using dataclasses and Pydantic at boundaries. The goal is maintainable, testable systems where pure business logic is isolated from IO and infrastructure.
The architecture enforces a bottom-up dependency flow: Router/Handler → Service → Repository → Entity → Database. Entities and value objects encapsulate business rules and transformations (from_request, to_record, to_response) while repositories hide storage details behind interfaces. Services orchestrate workflows using pure functions in the functional core; the imperative shell performs IO, validation at boundaries, and coordinates repositories and handlers.
When should I use Pydantic vs dataclasses?
Use dataclasses for internal domain entities and immutable value objects; use Pydantic at API boundaries for validation, parsing, and OpenAPI generation.
How do I keep entities pure while persisting state?
Keep persistence in repository implementations. Transform entities to record DTOs (to_record) and reconstruct with from_record; avoid IO calls inside entity methods.