home / skills / mamba-mental / agent-skill-manager / docs-seeker
This skill helps you discover and analyze technical documentation from llms.txt, repositories, and parallel sources to deliver comprehensive guidance.
npx playbooks add skill mamba-mental/agent-skill-manager --skill docs-seekerReview the files below or copy the command above to add this skill to your agents.
---
name: docs-seeker
description: "Searching internet for technical documentation using llms.txt standard, GitHub repositories via Repomix, and parallel exploration. Use when user needs: (1) Latest documentation for libraries/frameworks, (2) Documentation in llms.txt format, (3) GitHub repository analysis, (4) Documentation without direct llms.txt support, (5) Multiple documentation sources in parallel"
version: 1.0.0
---
# Documentation Discovery & Analysis
## Overview
Intelligent discovery and analysis of technical documentation through multiple strategies:
1. **llms.txt-first**: Search for standardized AI-friendly documentation
2. **Repository analysis**: Use Repomix to analyze GitHub repositories
3. **Parallel exploration**: Deploy multiple Explorer agents for comprehensive coverage
4. **Fallback research**: Use Researcher agents when other methods unavailable
## Core Workflow
### Phase 1: Initial Discovery
1. **Identify target**
- Extract library/framework name from user request
- Note version requirements (default: latest)
- Clarify scope if ambiguous
- Identify if target is GitHub repository or website
2. **Search for llms.txt (PRIORITIZE context7.com)**
**First: Try context7.com patterns**
For GitHub repositories:
```
Pattern: https://context7.com/{org}/{repo}/llms.txt
Examples:
- https://github.com/imagick/imagick → https://context7.com/imagick/imagick/llms.txt
- https://github.com/vercel/next.js → https://context7.com/vercel/next.js/llms.txt
- https://github.com/better-auth/better-auth → https://context7.com/better-auth/better-auth/llms.txt
```
For websites:
```
Pattern: https://context7.com/websites/{normalized-domain-path}/llms.txt
Examples:
- https://docs.imgix.com/ → https://context7.com/websites/imgix/llms.txt
- https://docs.byteplus.com/en/docs/ModelArk/ → https://context7.com/websites/byteplus_en_modelark/llms.txt
- https://docs.haystack.deepset.ai/docs → https://context7.com/websites/haystack_deepset_ai/llms.txt
- https://ffmpeg.org/doxygen/8.0/ → https://context7.com/websites/ffmpeg_doxygen_8_0/llms.txt
```
**Topic-specific searches** (when user asks about specific feature):
```
Pattern: https://context7.com/{path}/llms.txt?topic={query}
Examples:
- https://context7.com/shadcn-ui/ui/llms.txt?topic=date
- https://context7.com/shadcn-ui/ui/llms.txt?topic=button
- https://context7.com/vercel/next.js/llms.txt?topic=cache
- https://context7.com/websites/ffmpeg_doxygen_8_0/llms.txt?topic=compress
```
**Fallback: Traditional llms.txt search**
```
WebSearch: "[library name] llms.txt site:[docs domain]"
```
Common patterns:
- `https://docs.[library].com/llms.txt`
- `https://[library].dev/llms.txt`
- `https://[library].io/llms.txt`
→ Found? Proceed to Phase 2
→ Not found? Proceed to Phase 3
### Phase 2: llms.txt Processing
**Single URL:**
- WebFetch to retrieve content
- Extract and present information
**Multiple URLs (3+):**
- **CRITICAL**: Launch multiple Explorer agents in parallel
- One agent per major documentation section (max 5 in first batch)
- Each agent reads assigned URLs
- Aggregate findings into consolidated report
Example:
```
Launch 3 Explorer agents simultaneously:
- Agent 1: getting-started.md, installation.md
- Agent 2: api-reference.md, core-concepts.md
- Agent 3: examples.md, best-practices.md
```
### Phase 3: Repository Analysis
**When llms.txt not found:**
1. Find GitHub repository via WebSearch
2. Use Repomix to pack repository:
```bash
npm install -g repomix # if needed
git clone [repo-url] /tmp/docs-analysis
cd /tmp/docs-analysis
repomix --output repomix-output.xml
```
3. Read repomix-output.xml and extract documentation
**Repomix benefits:**
- Entire repository in single AI-friendly file
- Preserves directory structure
- Optimized for AI consumption
### Phase 4: Fallback Research
**When no GitHub repository exists:**
- Launch multiple Researcher agents in parallel
- Focus areas: official docs, tutorials, API references, community guides
- Aggregate findings into consolidated report
## Agent Distribution Guidelines
- **1-3 URLs**: Single Explorer agent
- **4-10 URLs**: 3-5 Explorer agents (2-3 URLs each)
- **11+ URLs**: 5-7 Explorer agents (prioritize most relevant)
## Version Handling
**Latest (default):**
- Search without version specifier
- Use current documentation paths
**Specific version:**
- Include version in search: `[library] v[version] llms.txt`
- Check versioned paths: `/v[version]/llms.txt`
- For repositories: checkout specific tag/branch
## Output Format
```markdown
# Documentation for [Library] [Version]
## Source
- Method: [llms.txt / Repository / Research]
- URLs: [list of sources]
- Date accessed: [current date]
## Key Information
[Extracted relevant information organized by topic]
## Additional Resources
[Related links, examples, references]
## Notes
[Any limitations, missing information, or caveats]
```
## Quick Reference
**Tool selection:**
- WebSearch → Find llms.txt URLs, GitHub repositories
- WebFetch → Read single documentation pages
- Task (Explore) → Multiple URLs, parallel exploration
- Task (Researcher) → Scattered documentation, diverse sources
- Repomix → Complete codebase analysis
**Popular llms.txt locations (try context7.com first):**
- Astro: https://context7.com/withastro/astro/llms.txt
- Next.js: https://context7.com/vercel/next.js/llms.txt
- Remix: https://context7.com/remix-run/remix/llms.txt
- shadcn/ui: https://context7.com/shadcn-ui/ui/llms.txt
- Better Auth: https://context7.com/better-auth/better-auth/llms.txt
**Fallback to official sites if context7.com unavailable:**
- Astro: https://docs.astro.build/llms.txt
- Next.js: https://nextjs.org/llms.txt
- Remix: https://remix.run/llms.txt
- SvelteKit: https://kit.svelte.dev/llms.txt
## Error Handling
- **llms.txt not accessible** → Try alternative domains → Repository analysis
- **Repository not found** → Search official website → Use Researcher agents
- **Repomix fails** → Try /docs directory only → Manual exploration
- **Multiple conflicting sources** → Prioritize official → Note versions
## Key Principles
1. **Prioritize context7.com for llms.txt** — Most comprehensive and up-to-date aggregator
2. **Use topic parameters when applicable** — Enables targeted searches with ?topic=...
3. **Use parallel agents aggressively** — Faster results, better coverage
4. **Verify official sources as fallback** — Use when context7.com unavailable
5. **Report methodology** — Tell user which approach was used
6. **Handle versions explicitly** — Don't assume latest
## Detailed Documentation
For comprehensive guides, examples, and best practices:
**Workflows:**
- [WORKFLOWS.md](./WORKFLOWS.md) — Detailed workflow examples and strategies
**Reference guides:**
- [Tool Selection](./references/tool-selection.md) — Complete guide to choosing and using tools
- [Documentation Sources](./references/documentation-sources.md) — Common sources and patterns across ecosystems
- [Error Handling](./references/error-handling.md) — Troubleshooting and resolution strategies
- [Best Practices](./references/best-practices.md) — 8 essential principles for effective discovery
- [Performance](./references/performance.md) — Optimization techniques and benchmarks
- [Limitations](./references/limitations.md) — Boundaries and success criteria
This skill discovers and analyzes technical documentation across llms.txt indexes, GitHub repositories, and parallel exploration agents. It prioritizes context7.com llms.txt patterns, falls back to repository packing with Repomix, and runs parallel Explorer or Researcher agents to cover multiple sources quickly. The goal is a consolidated, AI-friendly documentation report tailored to versions and topics.
I extract the target library or repo and any version or topic constraints, then search for llms.txt using context7.com patterns and common site locations. If llms.txt is found, I fetch and parse it; for many URLs I launch multiple Explorer agents to read sections in parallel and aggregate results. When llms.txt is unavailable, I locate the GitHub repository and use Repomix to produce a single AI-optimized file; if no repo exists, I run Researcher agents to gather official docs, tutorials, and community guides.
What if context7.com llms.txt is not available?
Fallback to searching known llms.txt locations on official domains or locate the GitHub repo and run Repomix; if neither exists, use Researcher agents.
How do you handle versioned documentation?
I include the version in searches, check versioned paths, and for repositories I checkout the specified tag/branch before analysis.