home / skills / mamba-mental / agent-skill-manager / databases

databases skill

/skills/databases

This skill helps you design schemas, optimize queries, and manage migrations for MongoDB and PostgreSQL with practical, production-ready guidance.

npx playbooks add skill mamba-mental/agent-skill-manager --skill databases

Review the files below or copy the command above to add this skill to your agents.

Files (19)
SKILL.md
7.5 KB
---
name: databases
description: Work with MongoDB (document database, BSON documents, aggregation pipelines, Atlas cloud) and PostgreSQL (relational database, SQL queries, psql CLI, pgAdmin). Use when designing database schemas, writing queries and aggregations, optimizing indexes for performance, performing database migrations, configuring replication and sharding, implementing backup and restore strategies, managing database users and permissions, analyzing query performance, or administering production databases.
license: MIT
---

# Databases Skill

Unified guide for working with MongoDB (document-oriented) and PostgreSQL (relational) databases. Choose the right database for your use case and master both systems.

## When to Use This Skill

Use when:
- Designing database schemas and data models
- Writing queries (SQL or MongoDB query language)
- Building aggregation pipelines or complex joins
- Optimizing indexes and query performance
- Implementing database migrations
- Setting up replication, sharding, or clustering
- Configuring backups and disaster recovery
- Managing database users and permissions
- Analyzing slow queries and performance issues
- Administering production database deployments

## Database Selection Guide

### Choose MongoDB When:
- Schema flexibility: frequent structure changes, heterogeneous data
- Document-centric: natural JSON/BSON data model
- Horizontal scaling: need to shard across multiple servers
- High write throughput: IoT, logging, real-time analytics
- Nested/hierarchical data: embedded documents preferred
- Rapid prototyping: schema evolution without migrations

**Best for:** Content management, catalogs, IoT time series, real-time analytics, mobile apps, user profiles

### Choose PostgreSQL When:
- Strong consistency: ACID transactions critical
- Complex relationships: many-to-many joins, referential integrity
- SQL requirement: team expertise, reporting tools, BI systems
- Data integrity: strict schema validation, constraints
- Mature ecosystem: extensive tooling, extensions
- Complex queries: window functions, CTEs, analytical workloads

**Best for:** Financial systems, e-commerce transactions, ERP, CRM, data warehousing, analytics

### Both Support:
- JSON/JSONB storage and querying
- Full-text search capabilities
- Geospatial queries and indexing
- Replication and high availability
- ACID transactions (MongoDB 4.0+)
- Strong security features

## Quick Start

### MongoDB Setup

```bash
# Atlas (Cloud) - Recommended
# 1. Sign up at mongodb.com/atlas
# 2. Create M0 free cluster
# 3. Get connection string

# Connection
mongodb+srv://user:[email protected]/db

# Shell
mongosh "mongodb+srv://cluster.mongodb.net/mydb"

# Basic operations
db.users.insertOne({ name: "Alice", age: 30 })
db.users.find({ age: { $gte: 18 } })
db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } })
db.users.deleteOne({ name: "Alice" })
```

### PostgreSQL Setup

```bash
# Ubuntu/Debian
sudo apt-get install postgresql postgresql-contrib

# Start service
sudo systemctl start postgresql

# Connect
psql -U postgres -d mydb

# Basic operations
CREATE TABLE users (id SERIAL PRIMARY KEY, name TEXT, age INT);
INSERT INTO users (name, age) VALUES ('Alice', 30);
SELECT * FROM users WHERE age >= 18;
UPDATE users SET age = 31 WHERE name = 'Alice';
DELETE FROM users WHERE name = 'Alice';
```

## Common Operations

### Create/Insert
```javascript
// MongoDB
db.users.insertOne({ name: "Bob", email: "[email protected]" })
db.users.insertMany([{ name: "Alice" }, { name: "Charlie" }])
```

```sql
-- PostgreSQL
INSERT INTO users (name, email) VALUES ('Bob', '[email protected]');
INSERT INTO users (name, email) VALUES ('Alice', NULL), ('Charlie', NULL);
```

### Read/Query
```javascript
// MongoDB
db.users.find({ age: { $gte: 18 } })
db.users.findOne({ email: "[email protected]" })
```

```sql
-- PostgreSQL
SELECT * FROM users WHERE age >= 18;
SELECT * FROM users WHERE email = '[email protected]' LIMIT 1;
```

### Update
```javascript
// MongoDB
db.users.updateOne({ name: "Bob" }, { $set: { age: 25 } })
db.users.updateMany({ status: "pending" }, { $set: { status: "active" } })
```

```sql
-- PostgreSQL
UPDATE users SET age = 25 WHERE name = 'Bob';
UPDATE users SET status = 'active' WHERE status = 'pending';
```

### Delete
```javascript
// MongoDB
db.users.deleteOne({ name: "Bob" })
db.users.deleteMany({ status: "deleted" })
```

```sql
-- PostgreSQL
DELETE FROM users WHERE name = 'Bob';
DELETE FROM users WHERE status = 'deleted';
```

### Indexing
```javascript
// MongoDB
db.users.createIndex({ email: 1 })
db.users.createIndex({ status: 1, createdAt: -1 })
```

```sql
-- PostgreSQL
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_users_status_created ON users(status, created_at DESC);
```

## Reference Navigation

### MongoDB References
- **[mongodb-crud.md](references/mongodb-crud.md)** - CRUD operations, query operators, atomic updates
- **[mongodb-aggregation.md](references/mongodb-aggregation.md)** - Aggregation pipeline, stages, operators, patterns
- **[mongodb-indexing.md](references/mongodb-indexing.md)** - Index types, compound indexes, performance optimization
- **[mongodb-atlas.md](references/mongodb-atlas.md)** - Atlas cloud setup, clusters, monitoring, search

### PostgreSQL References
- **[postgresql-queries.md](references/postgresql-queries.md)** - SELECT, JOINs, subqueries, CTEs, window functions
- **[postgresql-psql-cli.md](references/postgresql-psql-cli.md)** - psql commands, meta-commands, scripting
- **[postgresql-performance.md](references/postgresql-performance.md)** - EXPLAIN, query optimization, vacuum, indexes
- **[postgresql-administration.md](references/postgresql-administration.md)** - User management, backups, replication, maintenance

## Python Utilities

Database utility scripts in `scripts/`:
- **db_migrate.py** - Generate and apply migrations for both databases
- **db_backup.py** - Backup and restore MongoDB and PostgreSQL
- **db_performance_check.py** - Analyze slow queries and recommend indexes

```bash
# Generate migration
python scripts/db_migrate.py --db mongodb --generate "add_user_index"

# Run backup
python scripts/db_backup.py --db postgres --output /backups/

# Check performance
python scripts/db_performance_check.py --db mongodb --threshold 100ms
```

## Key Differences Summary

| Feature | MongoDB | PostgreSQL |
|---------|---------|------------|
| Data Model | Document (JSON/BSON) | Relational (Tables/Rows) |
| Schema | Flexible, dynamic | Strict, predefined |
| Query Language | MongoDB Query Language | SQL |
| Joins | $lookup (limited) | Native, optimized |
| Transactions | Multi-document (4.0+) | Native ACID |
| Scaling | Horizontal (sharding) | Vertical (primary), Horizontal (extensions) |
| Indexes | Single, compound, text, geo, etc | B-tree, hash, GiST, GIN, etc |

## Best Practices

**MongoDB:**
- Use embedded documents for 1-to-few relationships
- Reference documents for 1-to-many or many-to-many
- Index frequently queried fields
- Use aggregation pipeline for complex transformations
- Enable authentication and TLS in production
- Use Atlas for managed hosting

**PostgreSQL:**
- Normalize schema to 3NF, denormalize for performance
- Use foreign keys for referential integrity
- Index foreign keys and frequently filtered columns
- Use EXPLAIN ANALYZE to optimize queries
- Regular VACUUM and ANALYZE maintenance
- Connection pooling (pgBouncer) for web apps

## Resources

- MongoDB: https://www.mongodb.com/docs/
- PostgreSQL: https://www.postgresql.org/docs/
- MongoDB University: https://learn.mongodb.com/
- PostgreSQL Tutorial: https://www.postgresqltutorial.com/

Overview

This skill helps you design, query, optimize, migrate, and administer MongoDB and PostgreSQL databases. It covers schema design, aggregation pipelines and SQL queries, index strategies, replication/sharding, backups, and production troubleshooting. Use it to choose the right database pattern and apply pragmatic best practices for reliability and performance.

How this skill works

The skill inspects your use case and suggests whether a document (MongoDB) or relational (PostgreSQL) model fits best, then provides concrete schema patterns, query examples, and index recommendations. It generates or reviews queries and aggregation pipelines, outlines migration steps, and recommends backup, replication, and monitoring configurations. For production issues it analyzes slow queries, suggests EXPLAIN/EXPLAIN ANALYZE guidance, and proposes index and schema changes.

When to use it

  • Designing or reviewing database schemas and data models
  • Writing or optimizing SQL queries and MongoDB aggregation pipelines
  • Planning migrations, backups, replication, or sharding strategies
  • Tuning indexes and diagnosing slow queries in production
  • Setting up user permissions, security, and monitoring for databases

Best practices

  • Choose MongoDB for flexible, document-centric data and high write throughput; choose PostgreSQL for strict consistency and complex relational queries
  • Index frequently filtered and joined columns; use compound and partial indexes where appropriate
  • Use EXPLAIN/EXPLAIN ANALYZE or MongoDB explain() to profile and iterate on slow queries
  • Apply schema constraints and foreign keys in PostgreSQL; use embedded vs referenced documents in MongoDB based on access patterns
  • Automate backups and test restores; enable authentication and TLS in production; use connection pooling for high-concurrency apps

Example use cases

  • Designing a user profile service with JSONB in PostgreSQL or documents in MongoDB depending on flexibility needs
  • Writing and optimizing a complex reporting SQL query using CTEs and window functions
  • Building a MongoDB aggregation pipeline to roll up time-series events for realtime analytics
  • Planning a migration path from a single-node DB to sharded MongoDB cluster or a high-availability PostgreSQL setup with replication
  • Analyzing slow transactions in production and recommending index or query rewrites

FAQ

Which database should I pick for a new project?

If you need strict ACID guarantees, complex joins, and mature SQL tooling pick PostgreSQL. If you need flexible schemas, nested documents, or easy horizontal scaling pick MongoDB.

How do I diagnose a slow query?

Start with EXPLAIN/EXPLAIN ANALYZE (Postgres) or explain() (MongoDB) to see execution plans, then check indexes, rewrite joins/aggregations, and look for missing statistics or inefficient scans.