home / skills / madappgang / claude-code / database-patterns
This skill helps you design robust database schemas and repositories by applying proven patterns for SQL and NoSQL.
npx playbooks add skill madappgang/claude-code --skill database-patternsReview the files below or copy the command above to add this skill to your agents.
---
name: database-patterns
version: 1.0.0
description: Use when designing database schemas, implementing repository patterns, writing optimized queries, managing migrations, or working with indexes and transactions for SQL/NoSQL databases.
keywords:
- database design
- schema design
- repository pattern
- SQL queries
- PostgreSQL
- MySQL
- MongoDB
- indexes
- migrations
- transactions
plugin: dev
updated: 2026-01-20
---
# Database Patterns
## Overview
Database design and access patterns for relational and NoSQL databases.
## Schema Design
### Normalization Levels
| Level | Description | Use Case |
|-------|-------------|----------|
| 1NF | Atomic values, no repeating groups | Base requirement |
| 2NF | No partial dependencies | Most applications |
| 3NF | No transitive dependencies | OLTP systems |
| Denormalized | Redundant data for reads | Read-heavy, analytics |
### Common Table Patterns
```sql
-- Users table
CREATE TABLE users (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
password_hash VARCHAR(255) NOT NULL,
name VARCHAR(255) NOT NULL,
status VARCHAR(20) DEFAULT 'active',
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
-- Soft delete pattern
ALTER TABLE users ADD COLUMN deleted_at TIMESTAMP NULL;
CREATE INDEX idx_users_deleted ON users(deleted_at) WHERE deleted_at IS NULL;
-- Audit columns
ALTER TABLE users ADD COLUMN created_by UUID REFERENCES users(id);
ALTER TABLE users ADD COLUMN updated_by UUID REFERENCES users(id);
```
### Relationships
```sql
-- One-to-Many
CREATE TABLE orders (
id UUID PRIMARY KEY,
user_id UUID NOT NULL REFERENCES users(id),
total DECIMAL(10,2) NOT NULL,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
CREATE INDEX idx_orders_user ON orders(user_id);
-- Many-to-Many
CREATE TABLE order_products (
order_id UUID REFERENCES orders(id) ON DELETE CASCADE,
product_id UUID REFERENCES products(id) ON DELETE CASCADE,
quantity INT NOT NULL,
price DECIMAL(10,2) NOT NULL,
PRIMARY KEY (order_id, product_id)
);
-- Self-referential (tree/hierarchy)
CREATE TABLE categories (
id UUID PRIMARY KEY,
name VARCHAR(255) NOT NULL,
parent_id UUID REFERENCES categories(id)
);
CREATE INDEX idx_categories_parent ON categories(parent_id);
```
## Indexing Strategies
### Index Types
| Type | Use Case | Example |
|------|----------|---------|
| B-tree | Range, equality | Most columns |
| Hash | Equality only | Exact matches |
| GIN | Arrays, JSON, full-text | JSONB, text search |
| GiST | Geometric, range types | PostGIS, IP ranges |
### Index Guidelines
```sql
-- Primary key (automatic)
CREATE TABLE users (id UUID PRIMARY KEY);
-- Foreign keys
CREATE INDEX idx_orders_user ON orders(user_id);
-- Frequent filters
CREATE INDEX idx_users_status ON users(status);
-- Composite for multi-column queries
CREATE INDEX idx_orders_user_status ON orders(user_id, status);
-- Partial index for common queries
CREATE INDEX idx_active_users ON users(email) WHERE status = 'active';
-- Expression index
CREATE INDEX idx_users_email_lower ON users(LOWER(email));
```
### When NOT to Index
- Small tables (< 1000 rows)
- Frequently updated columns
- Low cardinality columns
- Columns rarely used in WHERE
## Query Patterns
### Efficient Queries
```sql
-- Use specific columns, not *
SELECT id, name, email FROM users WHERE id = $1;
-- Limit results
SELECT * FROM users ORDER BY created_at DESC LIMIT 20;
-- Exists vs COUNT
SELECT EXISTS(SELECT 1 FROM users WHERE email = $1);
-- Batch inserts
INSERT INTO users (name, email) VALUES
('User 1', '[email protected]'),
('User 2', '[email protected]'),
('User 3', '[email protected]');
```
### Pagination
```sql
-- Offset pagination (simple but slow for large offsets)
SELECT * FROM users ORDER BY created_at DESC LIMIT 20 OFFSET 100;
-- Cursor pagination (better performance)
SELECT * FROM users
WHERE created_at < $cursor
ORDER BY created_at DESC
LIMIT 20;
-- Keyset pagination with tie-breaker
SELECT * FROM users
WHERE (created_at, id) < ($cursor_time, $cursor_id)
ORDER BY created_at DESC, id DESC
LIMIT 20;
```
### Common Query Patterns
```sql
-- Upsert (INSERT or UPDATE)
INSERT INTO users (email, name)
VALUES ($1, $2)
ON CONFLICT (email)
DO UPDATE SET name = EXCLUDED.name, updated_at = NOW();
-- Soft delete
UPDATE users SET deleted_at = NOW() WHERE id = $1;
SELECT * FROM users WHERE deleted_at IS NULL;
-- Lock for update (prevent race conditions)
SELECT * FROM accounts WHERE id = $1 FOR UPDATE;
-- Bulk update
UPDATE orders SET status = 'shipped'
WHERE id = ANY($1::uuid[]);
```
## Repository Pattern
### Interface
```typescript
interface UserRepository {
findById(id: string): Promise<User | null>;
findByEmail(email: string): Promise<User | null>;
findAll(filter: UserFilter, pagination: Pagination): Promise<PaginatedResult<User>>;
create(data: CreateUserInput): Promise<User>;
update(id: string, data: UpdateUserInput): Promise<User>;
delete(id: string): Promise<void>;
}
```
### Implementation
```typescript
class PostgresUserRepository implements UserRepository {
constructor(private db: Database) {}
async findById(id: string): Promise<User | null> {
const result = await this.db.query(
'SELECT * FROM users WHERE id = $1 AND deleted_at IS NULL',
[id]
);
return result.rows[0] || null;
}
async create(data: CreateUserInput): Promise<User> {
const result = await this.db.query(
`INSERT INTO users (name, email, password_hash)
VALUES ($1, $2, $3)
RETURNING *`,
[data.name, data.email, await hashPassword(data.password)]
);
return result.rows[0];
}
}
```
## Transaction Patterns
### Basic Transaction
```typescript
async function transferFunds(fromId: string, toId: string, amount: number) {
const client = await pool.connect();
try {
await client.query('BEGIN');
// Lock accounts
await client.query(
'SELECT * FROM accounts WHERE id IN ($1, $2) FOR UPDATE',
[fromId, toId]
);
// Debit
await client.query(
'UPDATE accounts SET balance = balance - $1 WHERE id = $2',
[amount, fromId]
);
// Credit
await client.query(
'UPDATE accounts SET balance = balance + $1 WHERE id = $2',
[amount, toId]
);
await client.query('COMMIT');
} catch (e) {
await client.query('ROLLBACK');
throw e;
} finally {
client.release();
}
}
```
### Isolation Levels
| Level | Dirty Read | Non-Repeatable Read | Phantom Read |
|-------|------------|---------------------|--------------|
| Read Uncommitted | Yes | Yes | Yes |
| Read Committed | No | Yes | Yes |
| Repeatable Read | No | No | Yes |
| Serializable | No | No | No |
```sql
-- Set isolation level
BEGIN TRANSACTION ISOLATION LEVEL SERIALIZABLE;
```
## Migration Patterns
### Migration Structure
```
migrations/
├── 001_create_users.sql
├── 002_add_user_status.sql
├── 003_create_orders.sql
└── 004_add_order_index.sql
```
### Migration Best Practices
```sql
-- Always reversible
-- UP
ALTER TABLE users ADD COLUMN phone VARCHAR(20);
-- DOWN
ALTER TABLE users DROP COLUMN phone;
-- Non-blocking index creation
CREATE INDEX CONCURRENTLY idx_users_phone ON users(phone);
-- Safe column renames (PostgreSQL)
ALTER TABLE users RENAME COLUMN name TO full_name;
-- Add NOT NULL safely
ALTER TABLE users ADD COLUMN status VARCHAR(20) DEFAULT 'active';
UPDATE users SET status = 'active' WHERE status IS NULL;
ALTER TABLE users ALTER COLUMN status SET NOT NULL;
```
## Connection Pooling
### Pool Configuration
```typescript
const pool = new Pool({
connectionString: process.env.DATABASE_URL,
max: 20, // Max connections
idleTimeoutMillis: 30000,
connectionTimeoutMillis: 2000,
});
```
### Best Practices
- Use connection pool (don't create new connections)
- Release connections promptly
- Set appropriate pool size (CPU cores * 2-4)
- Handle connection errors gracefully
## NoSQL Patterns (MongoDB/DynamoDB)
### Document Design
```javascript
// Embedded (for one-to-few)
{
_id: ObjectId("..."),
name: "John",
addresses: [
{ type: "home", street: "123 Main St" },
{ type: "work", street: "456 Office Blvd" }
]
}
// Referenced (for one-to-many)
{
_id: ObjectId("..."),
name: "John",
orderIds: [ObjectId("..."), ObjectId("...")]
}
```
### DynamoDB Single-Table Design
```
PK | SK | Attributes
----------------|-------------------|------------------
USER#123 | METADATA | name, email, ...
USER#123 | ORDER#001 | total, status, ...
USER#123 | ORDER#002 | total, status, ...
ORDER#001 | METADATA | userId, total, ...
ORDER#001 | ITEM#1 | productId, qty, ...
```
---
*Database design and access patterns*
This skill provides practical database design and access patterns for relational and NoSQL systems. It helps you design schemas, optimize queries and indexes, implement repository and transaction patterns, and manage safe migrations. The guidance focuses on production-ready choices and trade-offs for performance, maintainability, and safety.
The skill inspects schema design choices (normalization vs denormalization), indexing strategies, and common relationship patterns. It suggests query and pagination patterns, repository interfaces and implementations, transaction handling and isolation levels, migration best practices, connection pooling settings, and NoSQL modeling approaches. Recommendations include concrete SQL/TypeScript snippets and actionable rules for when to apply each pattern.
When should I denormalize data?
Denormalize when read performance is critical and the cost of maintaining redundancy is manageable, typically for analytics or hot read paths.
How do I choose index types?
Use B-tree for range and equality, hash for equality-only workloads, GIN for arrays/JSON/full-text, and GiST for geometric or range types.