home / skills / julianobarbosa / claude-code-skills / python-error-handling-skill
This skill helps you implement robust Python error handling with input validation, meaningful exceptions, and partial failure strategies.
npx playbooks add skill julianobarbosa/claude-code-skills --skill python-error-handling-skillReview the files below or copy the command above to add this skill to your agents.
---
name: python-error-handling
description: Python error handling patterns including input validation, exception hierarchies, and partial failure handling. Use when implementing validation logic, designing exception strategies, handling batch processing failures, or building robust APIs.
---
# Python Error Handling
Build robust Python applications with proper input validation, meaningful exceptions, and graceful failure handling. Good error handling makes debugging easier and systems more reliable.
## When to Use This Skill
- Validating user input and API parameters
- Designing exception hierarchies for applications
- Handling partial failures in batch operations
- Converting external data to domain types
- Building user-friendly error messages
- Implementing fail-fast validation patterns
## Core Concepts
### 1. Fail Fast
Validate inputs early, before expensive operations. Report all validation errors at once when possible.
### 2. Meaningful Exceptions
Use appropriate exception types with context. Messages should explain what failed, why, and how to fix it.
### 3. Partial Failures
In batch operations, don't let one failure abort everything. Track successes and failures separately.
### 4. Preserve Context
Chain exceptions to maintain the full error trail for debugging.
## Quick Start
```python
def fetch_page(url: str, page_size: int) -> Page:
if not url:
raise ValueError("'url' is required")
if not 1 <= page_size <= 100:
raise ValueError(f"'page_size' must be 1-100, got {page_size}")
# Now safe to proceed...
```
## Fundamental Patterns
### Pattern 1: Early Input Validation
Validate all inputs at API boundaries before any processing begins.
```python
def process_order(
order_id: str,
quantity: int,
discount_percent: float,
) -> OrderResult:
"""Process an order with validation."""
# Validate required fields
if not order_id:
raise ValueError("'order_id' is required")
# Validate ranges
if quantity <= 0:
raise ValueError(f"'quantity' must be positive, got {quantity}")
if not 0 <= discount_percent <= 100:
raise ValueError(
f"'discount_percent' must be 0-100, got {discount_percent}"
)
# Validation passed, proceed with processing
return _process_validated_order(order_id, quantity, discount_percent)
```
### Pattern 2: Convert to Domain Types Early
Parse strings and external data into typed domain objects at system boundaries.
```python
from enum import Enum
class OutputFormat(Enum):
JSON = "json"
CSV = "csv"
PARQUET = "parquet"
def parse_output_format(value: str) -> OutputFormat:
"""Parse string to OutputFormat enum.
Args:
value: Format string from user input.
Returns:
Validated OutputFormat enum member.
Raises:
ValueError: If format is not recognized.
"""
try:
return OutputFormat(value.lower())
except ValueError:
valid_formats = [f.value for f in OutputFormat]
raise ValueError(
f"Invalid format '{value}'. "
f"Valid options: {', '.join(valid_formats)}"
)
# Usage at API boundary
def export_data(data: list[dict], format_str: str) -> bytes:
output_format = parse_output_format(format_str) # Fail fast
# Rest of function uses typed OutputFormat
...
```
### Pattern 3: Pydantic for Complex Validation
Use Pydantic models for structured input validation with automatic error messages.
```python
from pydantic import BaseModel, Field, field_validator
class CreateUserInput(BaseModel):
"""Input model for user creation."""
email: str = Field(..., min_length=5, max_length=255)
name: str = Field(..., min_length=1, max_length=100)
age: int = Field(ge=0, le=150)
@field_validator("email")
@classmethod
def validate_email_format(cls, v: str) -> str:
if "@" not in v or "." not in v.split("@")[-1]:
raise ValueError("Invalid email format")
return v.lower()
@field_validator("name")
@classmethod
def normalize_name(cls, v: str) -> str:
return v.strip().title()
# Usage
try:
user_input = CreateUserInput(
email="[email protected]",
name="john doe",
age=25,
)
except ValidationError as e:
# Pydantic provides detailed error information
print(e.errors())
```
### Pattern 4: Map Errors to Standard Exceptions
Use Python's built-in exception types appropriately, adding context as needed.
| Failure Type | Exception | Example |
|--------------|-----------|---------|
| Invalid input | `ValueError` | Bad parameter values |
| Wrong type | `TypeError` | Expected string, got int |
| Missing item | `KeyError` | Dict key not found |
| Operational failure | `RuntimeError` | Service unavailable |
| Timeout | `TimeoutError` | Operation took too long |
| File not found | `FileNotFoundError` | Path doesn't exist |
| Permission denied | `PermissionError` | Access forbidden |
```python
# Good: Specific exception with context
raise ValueError(f"'page_size' must be 1-100, got {page_size}")
# Avoid: Generic exception, no context
raise Exception("Invalid parameter")
```
## Advanced Patterns
### Pattern 5: Custom Exceptions with Context
Create domain-specific exceptions that carry structured information.
```python
class ApiError(Exception):
"""Base exception for API errors."""
def __init__(
self,
message: str,
status_code: int,
response_body: str | None = None,
) -> None:
self.status_code = status_code
self.response_body = response_body
super().__init__(message)
class RateLimitError(ApiError):
"""Raised when rate limit is exceeded."""
def __init__(self, retry_after: int) -> None:
self.retry_after = retry_after
super().__init__(
f"Rate limit exceeded. Retry after {retry_after}s",
status_code=429,
)
# Usage
def handle_response(response: Response) -> dict:
match response.status_code:
case 200:
return response.json()
case 401:
raise ApiError("Invalid credentials", 401)
case 404:
raise ApiError(f"Resource not found: {response.url}", 404)
case 429:
retry_after = int(response.headers.get("Retry-After", 60))
raise RateLimitError(retry_after)
case code if 400 <= code < 500:
raise ApiError(f"Client error: {response.text}", code)
case code if code >= 500:
raise ApiError(f"Server error: {response.text}", code)
```
### Pattern 6: Exception Chaining
Preserve the original exception when re-raising to maintain the debug trail.
```python
import httpx
class ServiceError(Exception):
"""High-level service operation failed."""
pass
def upload_file(path: str) -> str:
"""Upload file and return URL."""
try:
with open(path, "rb") as f:
response = httpx.post("https://upload.example.com", files={"file": f})
response.raise_for_status()
return response.json()["url"]
except FileNotFoundError as e:
raise ServiceError(f"Upload failed: file not found at '{path}'") from e
except httpx.HTTPStatusError as e:
raise ServiceError(
f"Upload failed: server returned {e.response.status_code}"
) from e
except httpx.RequestError as e:
raise ServiceError(f"Upload failed: network error") from e
```
### Pattern 7: Batch Processing with Partial Failures
Never let one bad item abort an entire batch. Track results per item.
```python
from dataclasses import dataclass
@dataclass
class BatchResult[T]:
"""Results from batch processing."""
succeeded: dict[int, T] # index -> result
failed: dict[int, Exception] # index -> error
@property
def success_count(self) -> int:
return len(self.succeeded)
@property
def failure_count(self) -> int:
return len(self.failed)
@property
def all_succeeded(self) -> bool:
return len(self.failed) == 0
def process_batch(items: list[Item]) -> BatchResult[ProcessedItem]:
"""Process items, capturing individual failures.
Args:
items: Items to process.
Returns:
BatchResult with succeeded and failed items by index.
"""
succeeded: dict[int, ProcessedItem] = {}
failed: dict[int, Exception] = {}
for idx, item in enumerate(items):
try:
result = process_single_item(item)
succeeded[idx] = result
except Exception as e:
failed[idx] = e
return BatchResult(succeeded=succeeded, failed=failed)
# Caller handles partial results
result = process_batch(items)
if not result.all_succeeded:
logger.warning(
f"Batch completed with {result.failure_count} failures",
failed_indices=list(result.failed.keys()),
)
```
### Pattern 8: Progress Reporting for Long Operations
Provide visibility into batch progress without coupling business logic to UI.
```python
from collections.abc import Callable
ProgressCallback = Callable[[int, int, str], None] # current, total, status
def process_large_batch(
items: list[Item],
on_progress: ProgressCallback | None = None,
) -> BatchResult:
"""Process batch with optional progress reporting.
Args:
items: Items to process.
on_progress: Optional callback receiving (current, total, status).
"""
total = len(items)
succeeded = {}
failed = {}
for idx, item in enumerate(items):
if on_progress:
on_progress(idx, total, f"Processing {item.id}")
try:
succeeded[idx] = process_single_item(item)
except Exception as e:
failed[idx] = e
if on_progress:
on_progress(total, total, "Complete")
return BatchResult(succeeded=succeeded, failed=failed)
```
## Best Practices Summary
1. **Validate early** - Check inputs before expensive operations
2. **Use specific exceptions** - `ValueError`, `TypeError`, not generic `Exception`
3. **Include context** - Messages should explain what, why, and how to fix
4. **Convert types at boundaries** - Parse strings to enums/domain types early
5. **Chain exceptions** - Use `raise ... from e` to preserve debug info
6. **Handle partial failures** - Don't abort batches on single item errors
7. **Use Pydantic** - For complex input validation with structured errors
8. **Document failure modes** - Docstrings should list possible exceptions
9. **Log with context** - Include IDs, counts, and other debugging info
10. **Test error paths** - Verify exceptions are raised correctly
This skill documents robust Python error-handling patterns for input validation, exception design, and partial-failure handling. It focuses on practical, actionable patterns you can apply at API boundaries, batch processors, and service integration points to make systems more reliable and debuggable.
It describes fail-fast validation, conversion of external inputs to domain types, using specific built-in exceptions, and building custom exception classes with contextual fields. The skill also covers preserving exception context via chaining, using Pydantic for structured validation, and capturing per-item results for batch operations so failures don’t abort the whole job.
When should I create custom exceptions instead of using built-ins?
Create custom exceptions when you need to attach structured data (status codes, retry info) or to let callers catch domain-specific failures separately from generic errors.
How do I avoid losing debug info when transforming exceptions?
Use exception chaining (`raise NewError(...) from original_exc`) so the original traceback remains available for debugging.