home / skills / jezweb / claude-skills / cloudflare-d1

cloudflare-d1 skill

/skills/cloudflare-d1

This skill helps you manage Cloudflare D1 databases efficiently, guiding migrations, queries, and error handling to boost reliability.

This is most likely a fork of the cloudflare-d1 skill from vladimirbrejcha
npx playbooks add skill jezweb/claude-skills --skill cloudflare-d1

Review the files below or copy the command above to add this skill to your agents.

Files (9)
SKILL.md
25.7 KB
---
name: cloudflare-d1
description: |
  Build with D1 serverless SQLite database on Cloudflare's edge. Use when: creating databases, writing SQL migrations, querying D1 from Workers, handling relational data, or troubleshooting D1_ERROR, statement too long, migration failures, or query performance issues. Prevents 14 documented errors.
user-invocable: true
---

# Cloudflare D1 Database

**Status**: Production Ready ✅
**Last Updated**: 2026-01-20
**Dependencies**: cloudflare-worker-base (for Worker setup)
**Latest Versions**: [email protected], @cloudflare/[email protected]

**Recent Updates (2025)**:
- **Nov 2025**: Jurisdiction support (data localization compliance), remote bindings GA ([email protected]+), automatic resource provisioning
- **Sept 2025**: Automatic read-only query retries (up to 2 attempts), remote bindings public beta
- **July 2025**: Storage limits increased (250GB → 1TB), alpha backup access removed, REST API 50-500ms faster
- **May 2025**: HTTP API permissions security fix (D1:Edit required for writes)
- **April 2025**: Read replication public beta (read-only replicas across regions)
- **Feb 2025**: PRAGMA optimize support, read-only access permission bug fix
- **Jan 2025**: Free tier limits enforcement (Feb 10 start), Worker API 40-60% faster queries

---

## Quick Start (5 Minutes)

### 1. Create D1 Database

```bash
# Create a new D1 database
npx wrangler d1 create my-database

# Output includes database_id - save this!
# ✅ Successfully created DB 'my-database'
#
# [[d1_databases]]
# binding = "DB"
# database_name = "my-database"
# database_id = "<UUID>"
```

### 2. Configure Bindings

Add to your `wrangler.jsonc`:

```jsonc
{
  "name": "my-worker",
  "main": "src/index.ts",
  "compatibility_date": "2025-10-11",
  "d1_databases": [
    {
      "binding": "DB",                    // Available as env.DB in your Worker
      "database_name": "my-database",      // Name from wrangler d1 create
      "database_id": "<UUID>",             // ID from wrangler d1 create
      "preview_database_id": "local-db"    // For local development
    }
  ]
}
```

**CRITICAL:**
- `binding` is how you access the database in code (`env.DB`)
- `database_id` is the production database UUID
- `preview_database_id` is for local dev (can be any string)
- **Never commit real `database_id` values to public repos** - use environment variables or secrets

### 3. Create Your First Migration

```bash
# Create migration file
npx wrangler d1 migrations create my-database create_users_table

# This creates: migrations/0001_create_users_table.sql
```

Edit the migration file:

```sql
-- migrations/0001_create_users_table.sql
DROP TABLE IF EXISTS users;
CREATE TABLE IF NOT EXISTS users (
  user_id INTEGER PRIMARY KEY AUTOINCREMENT,
  email TEXT NOT NULL UNIQUE,
  username TEXT NOT NULL,
  created_at INTEGER NOT NULL,
  updated_at INTEGER
);

-- Create index for common queries
CREATE INDEX IF NOT EXISTS idx_users_email ON users(email);

-- Optimize database
PRAGMA optimize;
```

### 4. Apply Migration

```bash
# Apply locally first (for testing)
npx wrangler d1 migrations apply my-database --local

# Apply to production when ready
npx wrangler d1 migrations apply my-database --remote
```

### 5. Query from Your Worker

```typescript
// src/index.ts
import { Hono } from 'hono';

type Bindings = {
  DB: D1Database;
};

const app = new Hono<{ Bindings: Bindings }>();

app.get('/api/users/:email', async (c) => {
  const email = c.req.param('email');

  try {
    // ALWAYS use prepared statements with bind()
    const result = await c.env.DB.prepare(
      'SELECT * FROM users WHERE email = ?'
    )
    .bind(email)
    .first();

    if (!result) {
      return c.json({ error: 'User not found' }, 404);
    }

    return c.json(result);
  } catch (error: any) {
    console.error('D1 Error:', error.message);
    return c.json({ error: 'Database error' }, 500);
  }
});

export default app;
```

---

## D1 Migrations System

### Migration Workflow

```bash
# 1. Create migration
npx wrangler d1 migrations create <DATABASE_NAME> <MIGRATION_NAME>

# 2. List unapplied migrations
npx wrangler d1 migrations list <DATABASE_NAME> --local
npx wrangler d1 migrations list <DATABASE_NAME> --remote

# 3. Apply migrations
npx wrangler d1 migrations apply <DATABASE_NAME> --local   # Test locally
npx wrangler d1 migrations apply <DATABASE_NAME> --remote  # Deploy to production
```

### Migration File Naming

Migrations are automatically versioned:

```
migrations/
├── 0000_initial_schema.sql
├── 0001_add_users_table.sql
├── 0002_add_posts_table.sql
└── 0003_add_indexes.sql
```

**Rules:**
- Files are executed in sequential order
- Each migration runs once (tracked in `d1_migrations` table)
- Failed migrations roll back (transactional)
- Can't modify or delete applied migrations

### Custom Migration Configuration

```jsonc
{
  "d1_databases": [
    {
      "binding": "DB",
      "database_name": "my-database",
      "database_id": "<UUID>",
      "migrations_dir": "db/migrations",        // Custom directory (default: migrations/)
      "migrations_table": "schema_migrations"   // Custom tracking table (default: d1_migrations)
    }
  ]
}
```

### Migration Best Practices

#### ✅ Always Do:

```sql
-- Use IF NOT EXISTS to make migrations idempotent
CREATE TABLE IF NOT EXISTS users (...);
CREATE INDEX IF NOT EXISTS idx_users_email ON users(email);

-- Run PRAGMA optimize after schema changes
PRAGMA optimize;

-- Use UPPERCASE BEGIN/END in triggers (lowercase fails remotely)
CREATE TRIGGER update_timestamp
AFTER UPDATE ON users
FOR EACH ROW
BEGIN
  UPDATE users SET updated_at = unixepoch() WHERE user_id = NEW.user_id;
END;

-- Use transactions for data migrations
BEGIN TRANSACTION;
UPDATE users SET updated_at = unixepoch() WHERE updated_at IS NULL;
COMMIT;
```

#### ❌ Never Do:

```sql
-- DON'T include BEGIN TRANSACTION at start of migration file (D1 handles this)
BEGIN TRANSACTION;  -- ❌ Remove this

-- DON'T use lowercase begin/end in triggers (works locally, FAILS remotely)
CREATE TRIGGER my_trigger
AFTER INSERT ON table
begin  -- ❌ Use BEGIN (uppercase)
  UPDATE ...;
end;   -- ❌ Use END (uppercase)

-- DON'T use MySQL/PostgreSQL syntax
ALTER TABLE users MODIFY COLUMN email VARCHAR(255);  -- ❌ Not SQLite

-- DON'T create tables without IF NOT EXISTS
CREATE TABLE users (...);  -- ❌ Fails if table exists
```

### Handling Foreign Keys in Migrations

```sql
-- Temporarily disable foreign key checks during schema changes
PRAGMA defer_foreign_keys = true;

-- Make schema changes that would violate foreign keys
ALTER TABLE posts DROP COLUMN author_id;
ALTER TABLE posts ADD COLUMN user_id INTEGER REFERENCES users(user_id);

-- Foreign keys re-enabled automatically at end of migration
```

---

## D1 Workers API

**Type Definitions:**
```typescript
interface Env { DB: D1Database; }
type Bindings = { DB: D1Database; };
const app = new Hono<{ Bindings: Bindings }>();
```

**prepare() - PRIMARY METHOD (always use for user input):**
```typescript
const user = await env.DB.prepare('SELECT * FROM users WHERE email = ?')
  .bind(email).first();
```
Why: Prevents SQL injection, reusable, better performance, type-safe

**Query Result Methods:**
- `.all()` → `{ results, meta }` - Get all rows
- `.first()` → row object or null - Get first row
- `.first('column')` → value - Get single column value (e.g., COUNT)
- `.run()` → `{ success, meta }` - Execute INSERT/UPDATE/DELETE (no results)

**batch() - CRITICAL FOR PERFORMANCE:**
```typescript
const results = await env.DB.batch([
  env.DB.prepare('SELECT * FROM users WHERE user_id = ?').bind(1),
  env.DB.prepare('SELECT * FROM posts WHERE user_id = ?').bind(1)
]);
```
- Executes sequentially, single network round trip
- If one fails, remaining statements don't execute
- Use for: bulk inserts, fetching related data

**exec() - AVOID IN PRODUCTION:**
```typescript
await env.DB.exec('SELECT * FROM users;'); // Only for migrations/maintenance
```
- ❌ Never use with user input (SQL injection risk)
- ✅ Only use for: migration files, one-off tasks

---

## Query Patterns

### Basic CRUD Operations

```typescript
// CREATE
const { meta } = await env.DB.prepare(
  'INSERT INTO users (email, username, created_at) VALUES (?, ?, ?)'
).bind(email, username, Date.now()).run();
const newUserId = meta.last_row_id;

// READ (single)
const user = await env.DB.prepare('SELECT * FROM users WHERE user_id = ?')
  .bind(userId).first();

// READ (multiple)
const { results } = await env.DB.prepare('SELECT * FROM users LIMIT ?')
  .bind(10).all();

// UPDATE
const { meta } = await env.DB.prepare('UPDATE users SET username = ? WHERE user_id = ?')
  .bind(newUsername, userId).run();
const rowsAffected = meta.rows_written;

// DELETE
await env.DB.prepare('DELETE FROM users WHERE user_id = ?').bind(userId).run();

// COUNT
const count = await env.DB.prepare('SELECT COUNT(*) as total FROM users').first('total');

// EXISTS check
const exists = await env.DB.prepare('SELECT 1 FROM users WHERE email = ? LIMIT 1')
  .bind(email).first();
```

### Pagination Pattern

```typescript
const page = parseInt(c.req.query('page') || '1');
const limit = 20;
const offset = (page - 1) * limit;

const [countResult, usersResult] = await c.env.DB.batch([
  c.env.DB.prepare('SELECT COUNT(*) as total FROM users'),
  c.env.DB.prepare('SELECT * FROM users ORDER BY created_at DESC LIMIT ? OFFSET ?')
    .bind(limit, offset)
]);

return c.json({
  users: usersResult.results,
  pagination: { page, limit, total: countResult.results[0].total }
});
```

### Batch Pattern (Pseudo-Transactions)

```typescript
// D1 doesn't support multi-statement transactions, but batch() provides sequential execution
await env.DB.batch([
  env.DB.prepare('UPDATE users SET credits = credits - ? WHERE user_id = ?').bind(amount, fromUserId),
  env.DB.prepare('UPDATE users SET credits = credits + ? WHERE user_id = ?').bind(amount, toUserId),
  env.DB.prepare('INSERT INTO transactions (from_user, to_user, amount) VALUES (?, ?, ?)').bind(fromUserId, toUserId, amount)
]);
// If any statement fails, batch stops (transaction-like behavior)
```

---

## Error Handling

**Common Error Types:**
- `D1_ERROR` - General D1 error (often transient)
- `D1_EXEC_ERROR` - SQL syntax error or limitations
- `D1_TYPE_ERROR` - Type mismatch (undefined instead of null)
- `D1_COLUMN_NOTFOUND` - Column doesn't exist

**Common Errors and Fixes:**

| Error | Cause | Solution |
|-------|-------|----------|
| **Statement too long** | Large INSERT with 1000+ rows | Break into batches of 100-250 using `batch()` |
| **Network connection lost** | Transient failure or large import | Implement retry logic (see below) or break into smaller chunks |
| **Too many requests queued** | Individual queries in loop | Use `batch()` instead of loop |
| **D1_TYPE_ERROR** | Using `undefined` in bind | Use `null` for optional values: `.bind(email, bio \|\| null)` |
| **Transaction conflicts** | BEGIN TRANSACTION in migration | Remove BEGIN/COMMIT (D1 handles automatically) |
| **Foreign key violations** | Schema changes break constraints | Use `PRAGMA defer_foreign_keys = true` |
| **D1_EXEC_ERROR: incomplete input** | Multi-line SQL in D1Database.exec() | Use prepared statements or external .sql files ([Issue #9133](https://github.com/cloudflare/workers-sdk/issues/9133)) |

### Transient Errors Are Expected Behavior

**CRITICAL**: D1 queries fail transiently with errors like "Network connection lost", "storage operation exceeded timeout", or "isolate exceeded its memory limit". Cloudflare documentation states **"a handful of errors every several hours is not unexpected"** and recommends implementing retry logic. ([D1 FAQ](https://developers.cloudflare.com/d1/reference/faq/))

**Common Transient Errors:**
- `D1_ERROR: Network connection lost`
- `D1 DB storage operation exceeded timeout which caused object to be reset`
- `Internal error while starting up D1 DB storage caused object to be reset`
- `D1 DB's isolate exceeded its memory limit and was reset`

**Retry Pattern (Recommended):**

```typescript
async function queryWithRetry<T>(
  fn: () => Promise<T>,
  maxRetries = 3,
  baseDelay = 100
): Promise<T> {
  for (let i = 0; i < maxRetries; i++) {
    try {
      return await fn();
    } catch (error: any) {
      const isTransient = error.message?.includes('Network connection lost') ||
                         error.message?.includes('exceeded timeout') ||
                         error.message?.includes('exceeded its memory limit');

      if (!isTransient || i === maxRetries - 1) throw error;

      // Exponential backoff
      await new Promise(r => setTimeout(r, baseDelay * Math.pow(2, i)));
    }
  }
  throw new Error('Max retries exceeded');
}

// Usage
const user = await queryWithRetry(() =>
  env.DB.prepare('SELECT * FROM users WHERE email = ?').bind(email).first()
);
```

**Automatic Retries (Sept 2025):**
D1 automatically retries read-only queries (SELECT, EXPLAIN, WITH) up to 2 times on retryable errors. Check `meta.total_attempts` in response for retry count. Write queries should still implement custom retry logic.

---

## Performance Optimization

**Index Best Practices:**
- ✅ Index columns in WHERE clauses: `CREATE INDEX idx_users_email ON users(email)`
- ✅ Index foreign keys: `CREATE INDEX idx_posts_user_id ON posts(user_id)`
- ✅ Index columns for sorting: `CREATE INDEX idx_posts_created_at ON posts(created_at DESC)`
- ✅ Multi-column indexes: `CREATE INDEX idx_posts_user_published ON posts(user_id, published)`
- ✅ Partial indexes: `CREATE INDEX idx_users_active ON users(email) WHERE deleted = 0`
- ✅ Test with: `EXPLAIN QUERY PLAN SELECT ...`

**PRAGMA optimize (Feb 2025):**
```sql
CREATE INDEX idx_users_email ON users(email);
PRAGMA optimize;  -- Run after schema changes
```

**Query Optimization:**
- ✅ Use specific columns (not `SELECT *`)
- ✅ Always include LIMIT on large result sets
- ✅ Use indexes for WHERE conditions
- ❌ Avoid functions in WHERE (can't use indexes): `WHERE LOWER(email)` → store lowercase instead

---

## Local Development

**Local vs Remote (Nov 2025 - Remote Bindings GA):**
```bash
# Local database (automatic creation)
npx wrangler d1 migrations apply my-database --local
npx wrangler d1 execute my-database --local --command "SELECT * FROM users"

# Remote database
npx wrangler d1 execute my-database --remote --command "SELECT * FROM users"

# Remote bindings ([email protected]+) - connect local Worker to deployed D1
# Add to wrangler.jsonc: { "binding": "DB", "remote": true }
```

### Remote Bindings Connection Timeout

**Known Issue**: When using remote D1 bindings (`{ "remote": true }`), the connection times out after exactly 1 hour of inactivity. ([GitHub Issue #10801](https://github.com/cloudflare/workers-sdk/issues/10801))

**Error**: `D1_ERROR: Failed to parse body as JSON, got: error code: 1031`

**Workaround**:
```typescript
// Keep connection alive with periodic query (optional)
setInterval(async () => {
  try {
    await env.DB.prepare('SELECT 1').first();
  } catch (e) {
    console.log('Connection keepalive failed:', e);
  }
}, 30 * 60 * 1000); // Every 30 minutes
```

Or simply restart your dev server if queries fail after 1 hour of inactivity.

### Multi-Worker Development (Service Bindings)

When running multiple Workers with service bindings in a single `wrangler dev` process, the auxiliary worker cannot access its D1 binding because both workers share the same persistence path. ([GitHub Issue #11121](https://github.com/cloudflare/workers-sdk/issues/11121))

**Solution**: Use `--persist-to` flag to point all workers to the same persistence store:

```bash
# Apply worker2 migrations to worker1's persistence path
cd worker2
npx wrangler d1 migrations apply DB --local --persist-to=../worker1/.wrangler/state

# Now both workers can access D1
cd ../worker1
npx wrangler dev  # Both workers share the same D1 data
```

**Local Database Location:**
`.wrangler/state/v3/d1/miniflare-D1DatabaseObject/<database_id>.sqlite`

**Seed Local Database:**
```bash
npx wrangler d1 execute my-database --local --file=seed.sql
```

---

## Scaling & Limitations

### 10 GB Database Size Limit - Sharding Pattern

D1 has a hard 10 GB per database limit, but Cloudflare supports up to 50,000 databases per Worker. Use sharding to scale beyond 10 GB. ([DEV.to Article](https://dev.to/araldhafeeri/scaling-your-cloudflare-d1-database-from-the-10-gb-limit-to-tbs-4a16))

**Hash-based sharding example (10 databases = 100 GB capacity):**

```typescript
// Hash user ID to shard number
function getShardId(userId: string): number {
  const hash = Array.from(userId).reduce((acc, char) =>
    ((acc << 5) - acc) + char.charCodeAt(0), 0
  );
  return Math.abs(hash) % 10; // 10 shards
}

// wrangler.jsonc - Define 10 database shards
{
  "d1_databases": [
    { "binding": "DB_SHARD_0", "database_id": "..." },
    { "binding": "DB_SHARD_1", "database_id": "..." },
    { "binding": "DB_SHARD_2", "database_id": "..." },
    // ... up to DB_SHARD_9
  ]
}

// Get correct shard for user
function getUserDb(env: Env, userId: string): D1Database {
  const shardId = getShardId(userId);
  return env[`DB_SHARD_${shardId}`];
}

// Query user's data from correct shard
const db = getUserDb(env, userId);
const user = await db.prepare('SELECT * FROM users WHERE user_id = ?')
  .bind(userId).first();
```

**Alternative**: Tenant-based sharding (one database per customer/tenant)

### 2 MB Row Size Limit - Hybrid D1 + R2 Pattern

D1 has a 2 MB row size limit. For large content (HTML, JSON, images), use R2 for storage and D1 for metadata. ([DEV.to Article](https://dev.to/morphinewan/when-cloudflare-d1s-2mb-limit-taught-me-a-hard-lesson-about-database-design-3edb))

**Error**: `database row size exceeded maximum allowed size`

**Solution - Hybrid storage pattern:**

```typescript
// 1. Store large content in R2
const contentKey = `pages/${crypto.randomUUID()}.html`;
await env.R2_BUCKET.put(contentKey, largeHtmlContent);

// 2. Store metadata in D1
await env.DB.prepare(`
  INSERT INTO pages (url, r2_key, size, created_at)
  VALUES (?, ?, ?, ?)
`).bind(url, contentKey, largeHtmlContent.length, Date.now()).run();

// 3. Retrieve content
const page = await env.DB.prepare('SELECT * FROM pages WHERE url = ?')
  .bind(url).first();

if (page) {
  const content = await env.R2_BUCKET.get(page.r2_key);
  const html = await content.text();
}
```

### Database Portability - PostgreSQL Migration Considerations

If you plan to migrate from D1 (SQLite) to Hyperdrive (PostgreSQL) later, use consistent lowercase naming. PostgreSQL is case-sensitive for table and column names, while SQLite is not. ([Mats' Blog](https://mats.coffee/blog/d1-to-hyperdrive))

```sql
-- Use lowercase for portability
CREATE TABLE users (user_id INTEGER, email TEXT);
CREATE INDEX idx_users_email ON users(email);

-- NOT: CREATE TABLE Users (UserId INTEGER, Email TEXT);
```

### FTS5 Full-Text Search

**Case Sensitivity**: Always use lowercase "fts5" when creating virtual tables. Uppercase may cause "not authorized" errors. ([Cloudflare Community](https://community.cloudflare.com/t/d1-support-for-virtual-tables/607277))

```sql
-- Correct
CREATE VIRTUAL TABLE search_index USING fts5(
  title,
  content,
  tokenize = 'porter unicode61'
);

-- Query the index
SELECT * FROM search_index WHERE search_index MATCH 'query terms';
```

**Export Limitation**: Databases with FTS5 virtual tables cannot be exported using `wrangler d1 export`. Drop virtual tables before export, then recreate after import. ([GitHub Issue #9519](https://github.com/cloudflare/workers-sdk/issues/9519))

### Large Import/Export Operations

**Network Timeout on Large Imports**: Files with 5000+ INSERT statements may fail with "Network connection lost" error. ([GitHub Issue #11958](https://github.com/cloudflare/workers-sdk/issues/11958))

**Solutions**:
1. Break large files into smaller chunks (<5000 statements per file)
2. Use `batch()` API from Worker instead of wrangler CLI
3. Import to local first, then use Time Travel to restore to remote
4. Reduce individual statement size (100-250 rows per INSERT)

**Windows-Specific Issue**: On Windows 11, large SQL files exported from D1 may fail to re-import with "HashIndex detected hash table inconsistency". ([GitHub Issue #11708](https://github.com/cloudflare/workers-sdk/issues/11708))

**Workaround**: Delete `.wrangler` directory before executing:
```bash
rm -rf .wrangler
npx wrangler d1 execute db-name --file=database.sql
```

---

## Best Practices Summary

### ✅ Always Do:

1. **Use prepared statements** with `.bind()` for user input
2. **Use `.batch()`** for multiple queries (reduces latency)
3. **Create indexes** on frequently queried columns
4. **Run `PRAGMA optimize`** after schema changes
5. **Use `IF NOT EXISTS`** in migrations for idempotency
6. **Test migrations locally** before applying to production
7. **Handle errors gracefully** with try/catch
8. **Use `null`** instead of `undefined` for optional values
9. **Validate input** before binding to queries
10. **Check `meta.rows_written`** after UPDATE/DELETE

### ❌ Never Do:

1. **Never use `.exec()`** with user input (SQL injection risk)
2. **Never hardcode `database_id`** in public repos
3. **Never use `undefined`** in bind parameters (causes D1_TYPE_ERROR)
4. **Never fire individual queries in loops** (use batch instead)
5. **Never forget `LIMIT`** on potentially large result sets
6. **Never use `SELECT *`** in production (specify columns)
7. **Never include `BEGIN TRANSACTION`** in migration files
8. **Never modify applied migrations** (create new ones)
9. **Never skip error handling** on database operations
10. **Never assume queries succeed** (always check results)

---

## Known Issues Prevented

This skill prevents **14** documented D1 errors:

| Issue # | Error/Issue | Description | How to Avoid | Source |
|---------|-------------|-------------|--------------|--------|
| **#1** | **Statement too long** | Large INSERT statements exceed D1 limits | Break into batches of 100-250 rows using `batch()` | Existing |
| **#2** | **Transaction conflicts** | `BEGIN TRANSACTION` in migration files | Remove BEGIN/COMMIT (D1 handles automatically) | Existing |
| **#3** | **Foreign key violations** | Schema changes break foreign key constraints | Use `PRAGMA defer_foreign_keys = true` in migrations | Existing |
| **#4** | **Rate limiting / queue overload** | Too many individual queries | Use `batch()` instead of loops | Existing |
| **#5** | **Memory limit exceeded** | Query loads too much data into memory | Add LIMIT, paginate results, shard queries | Existing |
| **#6** | **Type mismatch errors** | Using `undefined` instead of `null` in bind() | Always use `null` for optional values | Existing |
| **#7** | **Lowercase BEGIN in triggers** | Triggers with lowercase `begin/end` fail remotely | Use uppercase `BEGIN/END` keywords ([Issue #10998](https://github.com/cloudflare/workers-sdk/issues/10998)) | TIER 1 |
| **#8** | **Remote bindings timeout** | Connection times out after 1 hour of inactivity | Restart dev server or implement keepalive pattern ([Issue #10801](https://github.com/cloudflare/workers-sdk/issues/10801)) | TIER 1 |
| **#9** | **Service bindings D1 access** | Auxiliary worker can't access D1 in multi-worker dev | Use `--persist-to` flag to share persistence path ([Issue #11121](https://github.com/cloudflare/workers-sdk/issues/11121)) | TIER 1 |
| **#10** | **Transient network errors** | Random "Network connection lost" failures | Implement exponential backoff retry logic ([D1 FAQ](https://developers.cloudflare.com/d1/reference/faq/)) | TIER 1 |
| **#11** | **FTS5 breaks export** | Databases with FTS5 virtual tables can't export | Drop virtual tables before export, recreate after import ([Issue #9519](https://github.com/cloudflare/workers-sdk/issues/9519)) | TIER 1 |
| **#12** | **Multi-line SQL in exec()** | D1Database.exec() fails on multi-line SQL | Use prepared statements or external .sql files ([Issue #9133](https://github.com/cloudflare/workers-sdk/issues/9133)) | TIER 1 |
| **#13** | **10 GB database limit** | Single database limited to 10 GB | Implement sharding across multiple databases ([Community](https://dev.to/araldhafeeri/scaling-your-cloudflare-d1-database-from-the-10-gb-limit-to-tbs-4a16)) | TIER 2 |
| **#14** | **2 MB row size limit** | Rows exceeding 2 MB fail | Use hybrid D1 + R2 storage pattern ([Community](https://dev.to/morphinewan/when-cloudflare-d1s-2mb-limit-taught-me-a-hard-lesson-about-database-design-3edb)) | TIER 2 |

---

## Wrangler Commands Reference

```bash
# Database management
wrangler d1 create <DATABASE_NAME>
wrangler d1 list
wrangler d1 delete <DATABASE_NAME>
wrangler d1 info <DATABASE_NAME>

# Migrations
wrangler d1 migrations create <DATABASE_NAME> <MIGRATION_NAME>
wrangler d1 migrations list <DATABASE_NAME> --local|--remote
wrangler d1 migrations apply <DATABASE_NAME> --local|--remote

# Execute queries
wrangler d1 execute <DATABASE_NAME> --local|--remote --command "SELECT * FROM users"
wrangler d1 execute <DATABASE_NAME> --local|--remote --file=./query.sql

# Time Travel (view historical data)
wrangler d1 time-travel info <DATABASE_NAME> --timestamp "2025-10-20"
wrangler d1 time-travel restore <DATABASE_NAME> --timestamp "2025-10-20"
```

---

## Official Documentation

- **D1 Overview**: https://developers.cloudflare.com/d1/
- **Get Started**: https://developers.cloudflare.com/d1/get-started/
- **Migrations**: https://developers.cloudflare.com/d1/reference/migrations/
- **Workers API**: https://developers.cloudflare.com/d1/worker-api/
- **Best Practices**: https://developers.cloudflare.com/d1/best-practices/
- **Wrangler Commands**: https://developers.cloudflare.com/workers/wrangler/commands/#d1

---

**Ready to build with D1!** 🚀

---

**Last verified**: 2026-01-20 | **Skill version**: 3.0.0 | **Changes**: Added 8 new known issues from community research (TIER 1-2 findings): trigger case sensitivity, remote binding timeouts, multi-worker dev patterns, transient error handling, FTS5 limitations, sharding patterns, hybrid D1+R2 storage, and database portability considerations.

Overview

This skill helps you build and operate Cloudflare D1 serverless SQLite databases on the edge. It provides practical guidance for creating databases, writing and applying migrations, querying D1 from Workers, and avoiding 14 documented errors. The content is focused on safe patterns, performance, and reliable error handling for production use.

How this skill works

The skill explains how to create D1 databases and configure bindings so your Worker can access env.DB. It walks through the migration workflow, migration file rules, and recommended SQL patterns (idempotent CREATE, PRAGMA optimize, and trigger conventions). It also covers the D1 Workers API: prepare(), batch(), exec(), and query result helpers with concrete TypeScript examples. Finally, it documents common errors and recommended retry and batching strategies for transient failures.

When to use it

  • Creating a new D1 database and configuring Worker bindings for production or local development
  • Writing, testing, and applying schema migrations safely across environments
  • Querying D1 from Cloudflare Workers using prepared statements and batch() for performance
  • Troubleshooting D1 errors like D1_ERROR, statement too long, or migration failures
  • Optimizing query performance with indexes, PRAGMA optimize, and EXPLAIN QUERY PLAN

Best practices

  • Always use env.DB.prepare() with .bind() for user input to prevent SQL injection
  • Make migrations idempotent (IF NOT EXISTS) and avoid explicit BEGIN/COMMIT in files
  • Use batch() for bulk operations and to reduce request loops and queued requests
  • Break large inserts into chunks (100–250 rows) to avoid 'statement too long' errors
  • Implement retry with exponential backoff for transient errors; rely on D1 auto-retries for read-only queries

Example use cases

  • Create and apply migrations for users, posts, and indexes with PRAGMA optimize after schema changes
  • Serve paginated API endpoints from a Worker using a COUNT + SELECT batch() pattern
  • Perform bulk updates or pseudo-transactions with batch() to ensure sequential execution
  • Handle transient D1 errors by wrapping queries in a retry helper with exponential backoff
  • Local development: apply migrations locally, test queries, then apply remotely before deploy

FAQ

Should I use exec() in production code?

No. exec() is intended for migrations or maintenance. Never use exec() with user input because it risks SQL injection.

How do I handle 'statement too long' errors?

Split very large INSERTs into batches of 100–250 rows and use env.DB.batch() or multiple prepared statements.