home / skills / jeremylongshore / claude-code-plugins-plus-skills / twinmind-observability

This skill helps you implement end-to-end TwinMind observability by configuring metrics, tracing, logging, and alerts for reliable operations.

npx playbooks add skill jeremylongshore/claude-code-plugins-plus-skills --skill twinmind-observability

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
14.6 KB
---
name: twinmind-observability
description: |
  Set up comprehensive observability for TwinMind integrations with metrics, traces, and alerts.
  Use when implementing monitoring for TwinMind operations, setting up dashboards,
  or configuring alerting for meeting AI integration health.
  Trigger with phrases like "twinmind monitoring", "twinmind metrics",
  "twinmind observability", "monitor twinmind", "twinmind alerts", "twinmind tracing".
allowed-tools: Read, Write, Edit
version: 1.0.0
license: MIT
author: Jeremy Longshore <[email protected]>
---

# TwinMind Observability

## Overview
Set up comprehensive observability for TwinMind integrations including metrics, distributed tracing, logging, and alerting.

## Prerequisites
- Prometheus or compatible metrics backend
- OpenTelemetry SDK installed
- Grafana or similar dashboarding tool
- AlertManager configured

## Metrics Collection

### Key Metrics

| Metric | Type | Description |
|--------|------|-------------|
| `twinmind_transcriptions_total` | Counter | Total transcription requests |
| `twinmind_transcription_duration_seconds` | Histogram | Transcription processing time |
| `twinmind_transcription_audio_hours` | Counter | Total audio hours processed |
| `twinmind_errors_total` | Counter | Error count by type |
| `twinmind_rate_limit_remaining` | Gauge | Rate limit headroom |
| `twinmind_summary_requests_total` | Counter | Summary generation requests |
| `twinmind_action_items_extracted` | Counter | Action items extracted |
| `twinmind_ai_tokens_used` | Counter | AI tokens consumed |

### Prometheus Metrics Implementation

```typescript
// src/observability/metrics.ts
import { Registry, Counter, Histogram, Gauge, Summary } from 'prom-client';

const registry = new Registry();

// Transcription metrics
export const transcriptionCounter = new Counter({
  name: 'twinmind_transcriptions_total',
  help: 'Total TwinMind transcription requests',
  labelNames: ['status', 'model', 'language'],
  registers: [registry],
});

export const transcriptionDuration = new Histogram({
  name: 'twinmind_transcription_duration_seconds',
  help: 'TwinMind transcription processing duration',
  labelNames: ['model'],
  buckets: [1, 5, 10, 30, 60, 120, 300, 600],  // Up to 10 minutes
  registers: [registry],
});

export const audioHoursProcessed = new Counter({
  name: 'twinmind_transcription_audio_hours',
  help: 'Total audio hours processed',
  labelNames: ['model'],
  registers: [registry],
});

// API metrics
export const apiRequestCounter = new Counter({
  name: 'twinmind_api_requests_total',
  help: 'Total TwinMind API requests',
  labelNames: ['method', 'endpoint', 'status'],
  registers: [registry],
});

export const apiLatency = new Histogram({
  name: 'twinmind_api_latency_seconds',
  help: 'TwinMind API request latency',
  labelNames: ['method', 'endpoint'],
  buckets: [0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10],
  registers: [registry],
});

// Error metrics
export const errorCounter = new Counter({
  name: 'twinmind_errors_total',
  help: 'TwinMind errors by type',
  labelNames: ['error_type', 'operation'],
  registers: [registry],
});

// Rate limit metrics
export const rateLimitRemaining = new Gauge({
  name: 'twinmind_rate_limit_remaining',
  help: 'Remaining rate limit quota',
  labelNames: ['endpoint'],
  registers: [registry],
});

// AI usage metrics
export const aiTokensUsed = new Counter({
  name: 'twinmind_ai_tokens_used',
  help: 'AI tokens consumed',
  labelNames: ['operation'],
  registers: [registry],
});

// Summary generation
export const summaryCounter = new Counter({
  name: 'twinmind_summary_requests_total',
  help: 'Summary generation requests',
  labelNames: ['status', 'format'],
  registers: [registry],
});

export const actionItemsExtracted = new Counter({
  name: 'twinmind_action_items_extracted',
  help: 'Action items extracted from meetings',
  registers: [registry],
});

export { registry };
```

### Instrumented Client

```typescript
// src/twinmind/instrumented-client.ts
import {
  transcriptionCounter,
  transcriptionDuration,
  audioHoursProcessed,
  apiRequestCounter,
  apiLatency,
  errorCounter,
  rateLimitRemaining,
} from '../observability/metrics';

export class InstrumentedTwinMindClient {
  private client: TwinMindClient;

  constructor(config: TwinMindConfig) {
    this.client = new TwinMindClient(config);
  }

  async transcribe(audioUrl: string, options?: TranscriptionOptions): Promise<Transcript> {
    const timer = transcriptionDuration.startTimer({ model: options?.model || 'ear-3' });

    try {
      const result = await this.client.transcribe(audioUrl, options);

      // Record success metrics
      transcriptionCounter.inc({
        status: 'success',
        model: options?.model || 'ear-3',
        language: result.language,
      });

      // Record audio hours
      audioHoursProcessed.inc(
        { model: options?.model || 'ear-3' },
        result.duration_seconds / 3600
      );

      return result;
    } catch (error: any) {
      transcriptionCounter.inc({
        status: 'error',
        model: options?.model || 'ear-3',
        language: 'unknown',
      });

      errorCounter.inc({
        error_type: error.code || 'unknown',
        operation: 'transcribe',
      });

      throw error;
    } finally {
      timer();
    }
  }

  async request<T>(method: string, endpoint: string, data?: any): Promise<T> {
    const timer = apiLatency.startTimer({ method, endpoint });

    try {
      const response = await this.client.request(method, endpoint, data);

      apiRequestCounter.inc({ method, endpoint, status: 'success' });

      // Update rate limit gauge from response headers
      if (response.headers?.['x-ratelimit-remaining']) {
        rateLimitRemaining.set(
          { endpoint },
          parseInt(response.headers['x-ratelimit-remaining'])
        );
      }

      return response.data;
    } catch (error: any) {
      apiRequestCounter.inc({
        method,
        endpoint,
        status: error.response?.status || 'error',
      });

      throw error;
    } finally {
      timer();
    }
  }
}
```

## Distributed Tracing

### OpenTelemetry Setup

```typescript
// src/observability/tracing.ts
import { NodeSDK } from '@opentelemetry/sdk-node';
import { getNodeAutoInstrumentations } from '@opentelemetry/auto-instrumentations-node';
import { OTLPTraceExporter } from '@opentelemetry/exporter-trace-otlp-http';
import { Resource } from '@opentelemetry/resources';
import { SemanticResourceAttributes } from '@opentelemetry/semantic-conventions';
import { trace, SpanStatusCode, SpanKind } from '@opentelemetry/api';

// Initialize SDK
const sdk = new NodeSDK({
  resource: new Resource({
    [SemanticResourceAttributes.SERVICE_NAME]: 'twinmind-integration',
    [SemanticResourceAttributes.SERVICE_VERSION]: process.env.npm_package_version,
    [SemanticResourceAttributes.DEPLOYMENT_ENVIRONMENT]: process.env.NODE_ENV,
  }),
  traceExporter: new OTLPTraceExporter({
    url: process.env.OTEL_EXPORTER_OTLP_ENDPOINT || 'http://localhost:4318/v1/traces',
  }),
  instrumentations: [getNodeAutoInstrumentations()],
});

sdk.start();

// Custom tracer for TwinMind operations
export const tracer = trace.getTracer('twinmind-client');

// Traced operation wrapper
export async function tracedOperation<T>(
  operationName: string,
  operation: () => Promise<T>,
  attributes?: Record<string, string | number>
): Promise<T> {
  return tracer.startActiveSpan(
    `twinmind.${operationName}`,
    { kind: SpanKind.CLIENT, attributes },
    async (span) => {
      try {
        const result = await operation();
        span.setStatus({ code: SpanStatusCode.OK });
        return result;
      } catch (error: any) {
        span.setStatus({
          code: SpanStatusCode.ERROR,
          message: error.message,
        });
        span.recordException(error);
        throw error;
      } finally {
        span.end();
      }
    }
  );
}

// Traced TwinMind client
export class TracedTwinMindClient {
  private client: TwinMindClient;

  async transcribe(audioUrl: string, options?: TranscriptionOptions): Promise<Transcript> {
    return tracedOperation(
      'transcribe',
      () => this.client.transcribe(audioUrl, options),
      {
        'twinmind.audio_url': audioUrl,
        'twinmind.model': options?.model || 'ear-3',
        'twinmind.diarization': options?.diarization ? 'true' : 'false',
      }
    );
  }

  async summarize(transcriptId: string): Promise<Summary> {
    return tracedOperation(
      'summarize',
      () => this.client.summarize(transcriptId),
      { 'twinmind.transcript_id': transcriptId }
    );
  }
}
```

## Structured Logging

```typescript
// src/observability/logging.ts
import pino from 'pino';

export const logger = pino({
  name: 'twinmind',
  level: process.env.LOG_LEVEL || 'info',
  formatters: {
    level: (label) => ({ level: label }),
  },
  redact: ['apiKey', 'authorization', 'password'],
});

// Operation-specific logging
export function logTwinMindOperation(
  operation: string,
  data: Record<string, any>,
  duration?: number
): void {
  logger.info({
    service: 'twinmind',
    operation,
    duration_ms: duration,
    ...data,
  });
}

// Error logging
export function logTwinMindError(
  operation: string,
  error: Error,
  context?: Record<string, any>
): void {
  logger.error({
    service: 'twinmind',
    operation,
    error: {
      name: error.name,
      message: error.message,
      stack: error.stack,
    },
    ...context,
  });
}
```

## Alert Configuration

### Prometheus AlertManager Rules

```yaml
# alerts/twinmind_alerts.yaml
groups:
  - name: twinmind_alerts
    rules:
      - alert: TwinMindHighErrorRate
        expr: |
          rate(twinmind_errors_total[5m]) /
          rate(twinmind_api_requests_total[5m]) > 0.05
        for: 5m
        labels:
          severity: warning
          service: twinmind
        annotations:
          summary: "TwinMind error rate > 5%"
          description: "Error rate is {{ $value | humanizePercentage }}"

      - alert: TwinMindHighLatency
        expr: |
          histogram_quantile(0.95,
            rate(twinmind_api_latency_seconds_bucket[5m])
          ) > 5
        for: 5m
        labels:
          severity: warning
          service: twinmind
        annotations:
          summary: "TwinMind P95 latency > 5s"
          description: "P95 latency is {{ $value | humanizeDuration }}"

      - alert: TwinMindTranscriptionFailures
        expr: |
          increase(twinmind_transcriptions_total{status="error"}[15m]) > 5
        for: 5m
        labels:
          severity: warning
          service: twinmind
        annotations:
          summary: "TwinMind transcription failures increasing"
          description: "{{ $value }} failures in last 15 minutes"

      - alert: TwinMindRateLimitApproaching
        expr: |
          twinmind_rate_limit_remaining < 10
        for: 1m
        labels:
          severity: warning
          service: twinmind
        annotations:
          summary: "TwinMind rate limit approaching"
          description: "Only {{ $value }} requests remaining"

      - alert: TwinMindRateLimitExceeded
        expr: |
          increase(twinmind_errors_total{error_type="RATE_LIMITED"}[5m]) > 0
        for: 1m
        labels:
          severity: critical
          service: twinmind
        annotations:
          summary: "TwinMind rate limit exceeded"
          description: "Rate limit errors detected"

      - alert: TwinMindAPIDown
        expr: |
          up{job="twinmind"} == 0
        for: 1m
        labels:
          severity: critical
          service: twinmind
        annotations:
          summary: "TwinMind integration is down"
          description: "Health check failing"

      - alert: TwinMindHighTokenUsage
        expr: |
          increase(twinmind_ai_tokens_used[24h]) > 1500000
        for: 5m
        labels:
          severity: warning
          service: twinmind
        annotations:
          summary: "High TwinMind token usage"
          description: "{{ $value }} tokens used in 24h (limit: 2M)"
```

## Grafana Dashboard

```json
{
  "dashboard": {
    "title": "TwinMind Integration",
    "panels": [
      {
        "title": "Transcription Rate",
        "type": "graph",
        "targets": [{
          "expr": "rate(twinmind_transcriptions_total[5m])",
          "legendFormat": "{{status}}"
        }]
      },
      {
        "title": "API Latency (P50/P95/P99)",
        "type": "graph",
        "targets": [
          {
            "expr": "histogram_quantile(0.5, rate(twinmind_api_latency_seconds_bucket[5m]))",
            "legendFormat": "P50"
          },
          {
            "expr": "histogram_quantile(0.95, rate(twinmind_api_latency_seconds_bucket[5m]))",
            "legendFormat": "P95"
          },
          {
            "expr": "histogram_quantile(0.99, rate(twinmind_api_latency_seconds_bucket[5m]))",
            "legendFormat": "P99"
          }
        ]
      },
      {
        "title": "Error Rate",
        "type": "graph",
        "targets": [{
          "expr": "rate(twinmind_errors_total[5m])",
          "legendFormat": "{{error_type}}"
        }]
      },
      {
        "title": "Rate Limit Remaining",
        "type": "gauge",
        "targets": [{
          "expr": "twinmind_rate_limit_remaining"
        }]
      },
      {
        "title": "Audio Hours Processed (24h)",
        "type": "stat",
        "targets": [{
          "expr": "increase(twinmind_transcription_audio_hours[24h])"
        }]
      },
      {
        "title": "AI Tokens Used (24h)",
        "type": "stat",
        "targets": [{
          "expr": "increase(twinmind_ai_tokens_used[24h])"
        }]
      }
    ]
  }
}
```

## Metrics Endpoint

```typescript
// src/api/metrics.ts
import express from 'express';
import { registry } from '../observability/metrics';

const router = express.Router();

router.get('/metrics', async (req, res) => {
  res.set('Content-Type', registry.contentType);
  res.send(await registry.metrics());
});

export default router;
```

## Output
- Prometheus metrics implementation
- Distributed tracing with OpenTelemetry
- Structured logging with Pino
- AlertManager rules
- Grafana dashboard configuration
- Metrics endpoint

## Error Handling

| Issue | Cause | Solution |
|-------|-------|----------|
| Missing metrics | No instrumentation | Wrap client calls |
| Trace gaps | Missing propagation | Check context headers |
| Alert storms | Wrong thresholds | Tune alert rules |
| High cardinality | Too many labels | Reduce label values |

## Resources
- [Prometheus Best Practices](https://prometheus.io/docs/practices/naming/)
- [OpenTelemetry Documentation](https://opentelemetry.io/docs/)
- [Grafana Dashboard Examples](https://grafana.com/grafana/dashboards/)

## Next Steps
For incident response, see `twinmind-incident-runbook`.

Overview

This skill sets up comprehensive observability for TwinMind integrations, covering metrics, distributed tracing, structured logs, dashboards, and alerting. It provides ready-to-use Prometheus metrics, OpenTelemetry tracing, Pino logging, Grafana panels, and Alertmanager rules to monitor integration health. Use the components to instrument clients, expose a /metrics endpoint, and trigger alerts for errors, latency, and rate limits.

How this skill works

The skill instruments TwinMind client operations to emit Prometheus counters, histograms, and gauges for requests, latency, errors, audio hours, and AI token usage. It configures an OpenTelemetry Node SDK and helper to wrap TwinMind calls in client spans with attributes and error recording. Structured logs use Pino for operation and error context. Grafana JSON panels visualize key metrics and Alertmanager rules map metrics to actionable alerts.

When to use it

  • When implementing production monitoring for TwinMind integrations
  • When you need latency, error, and usage metrics for meeting AI flows
  • When you want distributed tracing for TwinMind API calls and summaries
  • When you must expose metrics to Prometheus and dashboards to Grafana
  • When you need alerting for rate limits, high errors, or service downtime

Best practices

  • Instrument all client entry points and long-running operations with histograms and spans
  • Label metrics (model, endpoint, status) to enable fine-grained queries and dashboards
  • Record audio hours and token usage to track cost and quota trends
  • Redact secrets in structured logs and include operation context for faster debugging
  • Tune Alertmanager thresholds to avoid alert storms and escalate severity progressively

Example use cases

  • Track transcription throughput and P95 latency for meeting transcriptions
  • Detect and alert on rising transcription failures or downstream API errors
  • Monitor rate-limit remaining across endpoints and notify before quota exhaustion
  • Correlate traces with logs to find root cause of slow summaries or failed extractions
  • Build Grafana dashboard panels for transcriptions, API latency, errors, and token spend

FAQ

What backends are required?

Prometheus-compatible metrics backend, an OTLP collector or trace endpoint, Grafana for dashboards, and Alertmanager for alerts.

How do I expose metrics?

Use the provided /metrics Express endpoint to serve Prometheus metrics from the instrumented registry.