home / skills / jackspace / claudeskillz / scientific-pkg-scanpy

scientific-pkg-scanpy skill

/skills/scientific-pkg-scanpy

This skill helps you perform end-to-end single-cell RNA-seq analysis with QC, normalization, dimensionality reduction, clustering, and trajectory inference.

This is most likely a fork of the scanpy skill from microck
npx playbooks add skill jackspace/claudeskillz --skill scientific-pkg-scanpy

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
10.8 KB
---
name: scanpy
description: "Single-cell RNA-seq analysis. Load .h5ad/10X data, QC, normalization, PCA/UMAP/t-SNE, Leiden clustering, marker genes, cell type annotation, trajectory, for scRNA-seq analysis."
---

# Scanpy: Single-Cell Analysis

## Overview

Scanpy is a scalable Python toolkit for analyzing single-cell RNA-seq data, built on AnnData. Apply this skill for complete single-cell workflows including quality control, normalization, dimensionality reduction, clustering, marker gene identification, visualization, and trajectory analysis.

## When to Use This Skill

This skill should be used when:
- Analyzing single-cell RNA-seq data (.h5ad, 10X, CSV formats)
- Performing quality control on scRNA-seq datasets
- Creating UMAP, t-SNE, or PCA visualizations
- Identifying cell clusters and finding marker genes
- Annotating cell types based on gene expression
- Conducting trajectory inference or pseudotime analysis
- Generating publication-quality single-cell plots

## Quick Start

### Basic Import and Setup

```python
import scanpy as sc
import pandas as pd
import numpy as np

# Configure settings
sc.settings.verbosity = 3
sc.settings.set_figure_params(dpi=80, facecolor='white')
sc.settings.figdir = './figures/'
```

### Loading Data

```python
# From 10X Genomics
adata = sc.read_10x_mtx('path/to/data/')
adata = sc.read_10x_h5('path/to/data.h5')

# From h5ad (AnnData format)
adata = sc.read_h5ad('path/to/data.h5ad')

# From CSV
adata = sc.read_csv('path/to/data.csv')
```

### Understanding AnnData Structure

The AnnData object is the core data structure in scanpy:

```python
adata.X          # Expression matrix (cells × genes)
adata.obs        # Cell metadata (DataFrame)
adata.var        # Gene metadata (DataFrame)
adata.uns        # Unstructured annotations (dict)
adata.obsm       # Multi-dimensional cell data (PCA, UMAP)
adata.raw        # Raw data backup

# Access cell and gene names
adata.obs_names  # Cell barcodes
adata.var_names  # Gene names
```

## Standard Analysis Workflow

### 1. Quality Control

Identify and filter low-quality cells and genes:

```python
# Identify mitochondrial genes
adata.var['mt'] = adata.var_names.str.startswith('MT-')

# Calculate QC metrics
sc.pp.calculate_qc_metrics(adata, qc_vars=['mt'], inplace=True)

# Visualize QC metrics
sc.pl.violin(adata, ['n_genes_by_counts', 'total_counts', 'pct_counts_mt'],
             jitter=0.4, multi_panel=True)

# Filter cells and genes
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.filter_genes(adata, min_cells=3)
adata = adata[adata.obs.pct_counts_mt < 5, :]  # Remove high MT% cells
```

**Use the QC script for automated analysis:**
```bash
python scripts/qc_analysis.py input_file.h5ad --output filtered.h5ad
```

### 2. Normalization and Preprocessing

```python
# Normalize to 10,000 counts per cell
sc.pp.normalize_total(adata, target_sum=1e4)

# Log-transform
sc.pp.log1p(adata)

# Save raw counts for later
adata.raw = adata

# Identify highly variable genes
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
sc.pl.highly_variable_genes(adata)

# Subset to highly variable genes
adata = adata[:, adata.var.highly_variable]

# Regress out unwanted variation
sc.pp.regress_out(adata, ['total_counts', 'pct_counts_mt'])

# Scale data
sc.pp.scale(adata, max_value=10)
```

### 3. Dimensionality Reduction

```python
# PCA
sc.tl.pca(adata, svd_solver='arpack')
sc.pl.pca_variance_ratio(adata, log=True)  # Check elbow plot

# Compute neighborhood graph
sc.pp.neighbors(adata, n_neighbors=10, n_pcs=40)

# UMAP for visualization
sc.tl.umap(adata)
sc.pl.umap(adata, color='leiden')

# Alternative: t-SNE
sc.tl.tsne(adata)
```

### 4. Clustering

```python
# Leiden clustering (recommended)
sc.tl.leiden(adata, resolution=0.5)
sc.pl.umap(adata, color='leiden', legend_loc='on data')

# Try multiple resolutions to find optimal granularity
for res in [0.3, 0.5, 0.8, 1.0]:
    sc.tl.leiden(adata, resolution=res, key_added=f'leiden_{res}')
```

### 5. Marker Gene Identification

```python
# Find marker genes for each cluster
sc.tl.rank_genes_groups(adata, 'leiden', method='wilcoxon')

# Visualize results
sc.pl.rank_genes_groups(adata, n_genes=25, sharey=False)
sc.pl.rank_genes_groups_heatmap(adata, n_genes=10)
sc.pl.rank_genes_groups_dotplot(adata, n_genes=5)

# Get results as DataFrame
markers = sc.get.rank_genes_groups_df(adata, group='0')
```

### 6. Cell Type Annotation

```python
# Define marker genes for known cell types
marker_genes = ['CD3D', 'CD14', 'MS4A1', 'NKG7', 'FCGR3A']

# Visualize markers
sc.pl.umap(adata, color=marker_genes, use_raw=True)
sc.pl.dotplot(adata, var_names=marker_genes, groupby='leiden')

# Manual annotation
cluster_to_celltype = {
    '0': 'CD4 T cells',
    '1': 'CD14+ Monocytes',
    '2': 'B cells',
    '3': 'CD8 T cells',
}
adata.obs['cell_type'] = adata.obs['leiden'].map(cluster_to_celltype)

# Visualize annotated types
sc.pl.umap(adata, color='cell_type', legend_loc='on data')
```

### 7. Save Results

```python
# Save processed data
adata.write('results/processed_data.h5ad')

# Export metadata
adata.obs.to_csv('results/cell_metadata.csv')
adata.var.to_csv('results/gene_metadata.csv')
```

## Common Tasks

### Creating Publication-Quality Plots

```python
# Set high-quality defaults
sc.settings.set_figure_params(dpi=300, frameon=False, figsize=(5, 5))
sc.settings.file_format_figs = 'pdf'

# UMAP with custom styling
sc.pl.umap(adata, color='cell_type',
           palette='Set2',
           legend_loc='on data',
           legend_fontsize=12,
           legend_fontoutline=2,
           frameon=False,
           save='_publication.pdf')

# Heatmap of marker genes
sc.pl.heatmap(adata, var_names=genes, groupby='cell_type',
              swap_axes=True, show_gene_labels=True,
              save='_markers.pdf')

# Dot plot
sc.pl.dotplot(adata, var_names=genes, groupby='cell_type',
              save='_dotplot.pdf')
```

Refer to `references/plotting_guide.md` for comprehensive visualization examples.

### Trajectory Inference

```python
# PAGA (Partition-based graph abstraction)
sc.tl.paga(adata, groups='leiden')
sc.pl.paga(adata, color='leiden')

# Diffusion pseudotime
adata.uns['iroot'] = np.flatnonzero(adata.obs['leiden'] == '0')[0]
sc.tl.dpt(adata)
sc.pl.umap(adata, color='dpt_pseudotime')
```

### Differential Expression Between Conditions

```python
# Compare treated vs control within cell types
adata_subset = adata[adata.obs['cell_type'] == 'T cells']
sc.tl.rank_genes_groups(adata_subset, groupby='condition',
                         groups=['treated'], reference='control')
sc.pl.rank_genes_groups(adata_subset, groups=['treated'])
```

### Gene Set Scoring

```python
# Score cells for gene set expression
gene_set = ['CD3D', 'CD3E', 'CD3G']
sc.tl.score_genes(adata, gene_set, score_name='T_cell_score')
sc.pl.umap(adata, color='T_cell_score')
```

### Batch Correction

```python
# ComBat batch correction
sc.pp.combat(adata, key='batch')

# Alternative: use Harmony or scVI (separate packages)
```

## Key Parameters to Adjust

### Quality Control
- `min_genes`: Minimum genes per cell (typically 200-500)
- `min_cells`: Minimum cells per gene (typically 3-10)
- `pct_counts_mt`: Mitochondrial threshold (typically 5-20%)

### Normalization
- `target_sum`: Target counts per cell (default 1e4)

### Feature Selection
- `n_top_genes`: Number of HVGs (typically 2000-3000)
- `min_mean`, `max_mean`, `min_disp`: HVG selection parameters

### Dimensionality Reduction
- `n_pcs`: Number of principal components (check variance ratio plot)
- `n_neighbors`: Number of neighbors (typically 10-30)

### Clustering
- `resolution`: Clustering granularity (0.4-1.2, higher = more clusters)

## Common Pitfalls and Best Practices

1. **Always save raw counts**: `adata.raw = adata` before filtering genes
2. **Check QC plots carefully**: Adjust thresholds based on dataset quality
3. **Use Leiden over Louvain**: More efficient and better results
4. **Try multiple clustering resolutions**: Find optimal granularity
5. **Validate cell type annotations**: Use multiple marker genes
6. **Use `use_raw=True` for gene expression plots**: Shows original counts
7. **Check PCA variance ratio**: Determine optimal number of PCs
8. **Save intermediate results**: Long workflows can fail partway through

## Bundled Resources

### scripts/qc_analysis.py
Automated quality control script that calculates metrics, generates plots, and filters data:

```bash
python scripts/qc_analysis.py input.h5ad --output filtered.h5ad \
    --mt-threshold 5 --min-genes 200 --min-cells 3
```

### references/standard_workflow.md
Complete step-by-step workflow with detailed explanations and code examples for:
- Data loading and setup
- Quality control with visualization
- Normalization and scaling
- Feature selection
- Dimensionality reduction (PCA, UMAP, t-SNE)
- Clustering (Leiden, Louvain)
- Marker gene identification
- Cell type annotation
- Trajectory inference
- Differential expression

Read this reference when performing a complete analysis from scratch.

### references/api_reference.md
Quick reference guide for scanpy functions organized by module:
- Reading/writing data (`sc.read_*`, `adata.write_*`)
- Preprocessing (`sc.pp.*`)
- Tools (`sc.tl.*`)
- Plotting (`sc.pl.*`)
- AnnData structure and manipulation
- Settings and utilities

Use this for quick lookup of function signatures and common parameters.

### references/plotting_guide.md
Comprehensive visualization guide including:
- Quality control plots
- Dimensionality reduction visualizations
- Clustering visualizations
- Marker gene plots (heatmaps, dot plots, violin plots)
- Trajectory and pseudotime plots
- Publication-quality customization
- Multi-panel figures
- Color palettes and styling

Consult this when creating publication-ready figures.

### assets/analysis_template.py
Complete analysis template providing a full workflow from data loading through cell type annotation. Copy and customize this template for new analyses:

```bash
cp assets/analysis_template.py my_analysis.py
# Edit parameters and run
python my_analysis.py
```

The template includes all standard steps with configurable parameters and helpful comments.

## Additional Resources

- **Official scanpy documentation**: https://scanpy.readthedocs.io/
- **Scanpy tutorials**: https://scanpy-tutorials.readthedocs.io/
- **scverse ecosystem**: https://scverse.org/ (related tools: squidpy, scvi-tools, cellrank)
- **Best practices**: Luecken & Theis (2019) "Current best practices in single-cell RNA-seq"

## Tips for Effective Analysis

1. **Start with the template**: Use `assets/analysis_template.py` as a starting point
2. **Run QC script first**: Use `scripts/qc_analysis.py` for initial filtering
3. **Consult references as needed**: Load workflow and API references into context
4. **Iterate on clustering**: Try multiple resolutions and visualization methods
5. **Validate biologically**: Check marker genes match expected cell types
6. **Document parameters**: Record QC thresholds and analysis settings
7. **Save checkpoints**: Write intermediate results at key steps

Overview

This skill provides a complete Scanpy-based single-cell RNA-seq analysis workflow. It supports loading .h5ad and 10X data, performing QC, normalization, dimensionality reduction, clustering, marker gene discovery, cell type annotation, trajectory inference, and exporting results. Use it to run reproducible, publication-ready scRNA-seq analyses in Python.

How this skill works

The skill operates on AnnData objects: it reads common formats, computes QC metrics, filters cells/genes, normalizes and log-transforms data, selects highly variable genes, and scales values. It runs PCA, builds neighborhood graphs, and computes UMAP/t-SNE embeddings. Leiden clustering and marker-gene ranking identify cell populations. Trajectory tools (PAGA, diffusion pseudotime) and gene set scoring are included. Outputs are saved to .h5ad and CSVs, plus publication-quality figures.

When to use it

  • Processing raw single-cell datasets from 10X, h5ad, or CSV formats
  • Filtering low-quality cells and genes with automated QC
  • Generating PCA/UMAP/t-SNE visualizations for exploration or figures
  • Clustering cells (Leiden) and finding cluster marker genes
  • Annotating cell types and exporting annotated metadata
  • Running trajectory inference or pseudotime analysis

Best practices

  • Save raw counts early (adata.raw = adata) before heavy filtering
  • Inspect QC plots and adjust thresholds to your dataset (mt%, min_genes)
  • Select and subset highly variable genes (2000–3000) before dimensionality reduction
  • Try multiple Leiden resolutions to determine optimal cluster granularity
  • Use use_raw=True when plotting original expression values for markers
  • Save intermediate .h5ad checkpoints during long analyses

Example use cases

  • End-to-end processing of a 10X dataset to publishable UMAPs and cluster markers
  • Rapid QC and automated filtering using the bundled qc_analysis.py script
  • Annotating immune subsets by mapping cluster labels to known marker genes
  • Comparing treated vs control cells within a cell type using differential expression
  • Computing gene-set scores (e.g., T cell signature) and visualizing on UMAP
  • Inferring developmental trajectories with PAGA and diffusion pseudotime

FAQ

Which input formats are supported?

Read 10X (matrix or .h5), AnnData .h5ad, and CSV. Use sc.read_* helpers for convenience.

How do I choose number of PCs and neighbors?

Check the PCA variance-ratio plot for an elbow to set n_pcs. Typical n_pcs is 20–50. n_neighbors is dataset dependent, commonly 10–30; try values and inspect clustering stability.