home / skills / jackspace / claudeskillz / scientific-pkg-polars
This skill helps you analyze large datasets with Polars by leveraging lazy evaluation, vectorized operations, and fast IO for Python workflows.
npx playbooks add skill jackspace/claudeskillz --skill scientific-pkg-polarsReview the files below or copy the command above to add this skill to your agents.
---
name: polars
description: "Fast DataFrame library (Apache Arrow). Select, filter, group_by, joins, lazy evaluation, CSV/Parquet I/O, expression API, for high-performance data analysis workflows."
---
# Polars
## Overview
Polars is a lightning-fast DataFrame library for Python and Rust built on Apache Arrow. Work with Polars' expression-based API, lazy evaluation framework, and high-performance data manipulation capabilities for efficient data processing, pandas migration, and data pipeline optimization.
## Quick Start
### Installation and Basic Usage
Install Polars:
```python
pip install polars
```
Basic DataFrame creation and operations:
```python
import polars as pl
# Create DataFrame
df = pl.DataFrame({
"name": ["Alice", "Bob", "Charlie"],
"age": [25, 30, 35],
"city": ["NY", "LA", "SF"]
})
# Select columns
df.select("name", "age")
# Filter rows
df.filter(pl.col("age") > 25)
# Add computed columns
df.with_columns(
age_plus_10=pl.col("age") + 10
)
```
## Core Concepts
### Expressions
Expressions are the fundamental building blocks of Polars operations. They describe transformations on data and can be composed, reused, and optimized.
**Key principles:**
- Use `pl.col("column_name")` to reference columns
- Chain methods to build complex transformations
- Expressions are lazy and only execute within contexts (select, with_columns, filter, group_by)
**Example:**
```python
# Expression-based computation
df.select(
pl.col("name"),
(pl.col("age") * 12).alias("age_in_months")
)
```
### Lazy vs Eager Evaluation
**Eager (DataFrame):** Operations execute immediately
```python
df = pl.read_csv("file.csv") # Reads immediately
result = df.filter(pl.col("age") > 25) # Executes immediately
```
**Lazy (LazyFrame):** Operations build a query plan, optimized before execution
```python
lf = pl.scan_csv("file.csv") # Doesn't read yet
result = lf.filter(pl.col("age") > 25).select("name", "age")
df = result.collect() # Now executes optimized query
```
**When to use lazy:**
- Working with large datasets
- Complex query pipelines
- When only some columns/rows are needed
- Performance is critical
**Benefits of lazy evaluation:**
- Automatic query optimization
- Predicate pushdown
- Projection pushdown
- Parallel execution
For detailed concepts, load `references/core_concepts.md`.
## Common Operations
### Select
Select and manipulate columns:
```python
# Select specific columns
df.select("name", "age")
# Select with expressions
df.select(
pl.col("name"),
(pl.col("age") * 2).alias("double_age")
)
# Select all columns matching a pattern
df.select(pl.col("^.*_id$"))
```
### Filter
Filter rows by conditions:
```python
# Single condition
df.filter(pl.col("age") > 25)
# Multiple conditions (cleaner than using &)
df.filter(
pl.col("age") > 25,
pl.col("city") == "NY"
)
# Complex conditions
df.filter(
(pl.col("age") > 25) | (pl.col("city") == "LA")
)
```
### With Columns
Add or modify columns while preserving existing ones:
```python
# Add new columns
df.with_columns(
age_plus_10=pl.col("age") + 10,
name_upper=pl.col("name").str.to_uppercase()
)
# Parallel computation (all columns computed in parallel)
df.with_columns(
pl.col("value") * 10,
pl.col("value") * 100,
)
```
### Group By and Aggregations
Group data and compute aggregations:
```python
# Basic grouping
df.group_by("city").agg(
pl.col("age").mean().alias("avg_age"),
pl.len().alias("count")
)
# Multiple group keys
df.group_by("city", "department").agg(
pl.col("salary").sum()
)
# Conditional aggregations
df.group_by("city").agg(
(pl.col("age") > 30).sum().alias("over_30")
)
```
For detailed operation patterns, load `references/operations.md`.
## Aggregations and Window Functions
### Aggregation Functions
Common aggregations within `group_by` context:
- `pl.len()` - count rows
- `pl.col("x").sum()` - sum values
- `pl.col("x").mean()` - average
- `pl.col("x").min()` / `pl.col("x").max()` - extremes
- `pl.first()` / `pl.last()` - first/last values
### Window Functions with `over()`
Apply aggregations while preserving row count:
```python
# Add group statistics to each row
df.with_columns(
avg_age_by_city=pl.col("age").mean().over("city"),
rank_in_city=pl.col("salary").rank().over("city")
)
# Multiple grouping columns
df.with_columns(
group_avg=pl.col("value").mean().over("category", "region")
)
```
**Mapping strategies:**
- `group_to_rows` (default): Preserves original row order
- `explode`: Faster but groups rows together
- `join`: Creates list columns
## Data I/O
### Supported Formats
Polars supports reading and writing:
- CSV, Parquet, JSON, Excel
- Databases (via connectors)
- Cloud storage (S3, Azure, GCS)
- Google BigQuery
- Multiple/partitioned files
### Common I/O Operations
**CSV:**
```python
# Eager
df = pl.read_csv("file.csv")
df.write_csv("output.csv")
# Lazy (preferred for large files)
lf = pl.scan_csv("file.csv")
result = lf.filter(...).select(...).collect()
```
**Parquet (recommended for performance):**
```python
df = pl.read_parquet("file.parquet")
df.write_parquet("output.parquet")
```
**JSON:**
```python
df = pl.read_json("file.json")
df.write_json("output.json")
```
For comprehensive I/O documentation, load `references/io_guide.md`.
## Transformations
### Joins
Combine DataFrames:
```python
# Inner join
df1.join(df2, on="id", how="inner")
# Left join
df1.join(df2, on="id", how="left")
# Join on different column names
df1.join(df2, left_on="user_id", right_on="id")
```
### Concatenation
Stack DataFrames:
```python
# Vertical (stack rows)
pl.concat([df1, df2], how="vertical")
# Horizontal (add columns)
pl.concat([df1, df2], how="horizontal")
# Diagonal (union with different schemas)
pl.concat([df1, df2], how="diagonal")
```
### Pivot and Unpivot
Reshape data:
```python
# Pivot (wide format)
df.pivot(values="sales", index="date", columns="product")
# Unpivot (long format)
df.unpivot(index="id", on=["col1", "col2"])
```
For detailed transformation examples, load `references/transformations.md`.
## Pandas Migration
Polars offers significant performance improvements over pandas with a cleaner API. Key differences:
### Conceptual Differences
- **No index**: Polars uses integer positions only
- **Strict typing**: No silent type conversions
- **Lazy evaluation**: Available via LazyFrame
- **Parallel by default**: Operations parallelized automatically
### Common Operation Mappings
| Operation | Pandas | Polars |
|-----------|--------|--------|
| Select column | `df["col"]` | `df.select("col")` |
| Filter | `df[df["col"] > 10]` | `df.filter(pl.col("col") > 10)` |
| Add column | `df.assign(x=...)` | `df.with_columns(x=...)` |
| Group by | `df.groupby("col").agg(...)` | `df.group_by("col").agg(...)` |
| Window | `df.groupby("col").transform(...)` | `df.with_columns(...).over("col")` |
### Key Syntax Patterns
**Pandas sequential (slow):**
```python
df.assign(
col_a=lambda df_: df_.value * 10,
col_b=lambda df_: df_.value * 100
)
```
**Polars parallel (fast):**
```python
df.with_columns(
col_a=pl.col("value") * 10,
col_b=pl.col("value") * 100,
)
```
For comprehensive migration guide, load `references/pandas_migration.md`.
## Best Practices
### Performance Optimization
1. **Use lazy evaluation for large datasets:**
```python
lf = pl.scan_csv("large.csv") # Don't use read_csv
result = lf.filter(...).select(...).collect()
```
2. **Avoid Python functions in hot paths:**
- Stay within expression API for parallelization
- Use `.map_elements()` only when necessary
- Prefer native Polars operations
3. **Use streaming for very large data:**
```python
lf.collect(streaming=True)
```
4. **Select only needed columns early:**
```python
# Good: Select columns early
lf.select("col1", "col2").filter(...)
# Bad: Filter on all columns first
lf.filter(...).select("col1", "col2")
```
5. **Use appropriate data types:**
- Categorical for low-cardinality strings
- Appropriate integer sizes (i32 vs i64)
- Date types for temporal data
### Expression Patterns
**Conditional operations:**
```python
pl.when(condition).then(value).otherwise(other_value)
```
**Column operations across multiple columns:**
```python
df.select(pl.col("^.*_value$") * 2) # Regex pattern
```
**Null handling:**
```python
pl.col("x").fill_null(0)
pl.col("x").is_null()
pl.col("x").drop_nulls()
```
For additional best practices and patterns, load `references/best_practices.md`.
## Resources
This skill includes comprehensive reference documentation:
### references/
- `core_concepts.md` - Detailed explanations of expressions, lazy evaluation, and type system
- `operations.md` - Comprehensive guide to all common operations with examples
- `pandas_migration.md` - Complete migration guide from pandas to Polars
- `io_guide.md` - Data I/O operations for all supported formats
- `transformations.md` - Joins, concatenation, pivots, and reshaping operations
- `best_practices.md` - Performance optimization tips and common patterns
Load these references as needed when users require detailed information about specific topics.
This skill packages Polars, a lightning-fast DataFrame library built on Apache Arrow, for high-performance data analysis in Python. It exposes the expression-based API, lazy evaluation, fast I/O (CSV/Parquet/JSON), and common transformations like joins, group_by, and window functions. Use it to speed up data pipelines, migrate from pandas, or build scalable ETL workflows. The skill focuses on pragmatic examples and performance-first patterns.
The skill inspects and demonstrates Polars primitives: Expressions (pl.col, pl.when, aliases), eager DataFrame operations, and LazyFrame query planning with collect() to execute optimized pipelines. It shows common I/O patterns (read/write CSV, Parquet, JSON), transformation primitives (select, filter, with_columns, join, concat, pivot), and aggregation/window patterns with .over(). Performance tips highlight predicate/projection pushdown, parallel execution, streaming, and type choices.
When should I use LazyFrame vs DataFrame?
Use LazyFrame for large datasets, complex pipelines, or when you want automatic query optimization and pushdown. Use eager DataFrame for small data or quick interactive work.
How do I migrate common pandas patterns?
Map pandas select/filter/assign/groupby to pl.select/pl.filter/pl.with_columns/pl.group_by, avoid Python row-wise functions, and prefer parallel expression-based computations.