home / skills / jackspace / claudeskillz / scientific-pkg-matplotlib

scientific-pkg-matplotlib skill

/skills/scientific-pkg-matplotlib

This skill helps you create publication-quality plots with matplotlib, guiding line, scatter, bar, heatmap, and 3D visualizations in Python.

This is most likely a fork of the matplotlib skill from microck
npx playbooks add skill jackspace/claudeskillz --skill scientific-pkg-matplotlib

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
10.9 KB
---
name: matplotlib
description: "Foundational plotting library. Create line plots, scatter, bar, histograms, heatmaps, 3D, subplots, export PNG/PDF/SVG, for scientific visualization and publication figures."
---

# Matplotlib

## Overview

Matplotlib is Python's foundational visualization library for creating static, animated, and interactive plots. This skill provides guidance on using matplotlib effectively, covering both the pyplot interface (MATLAB-style) and the object-oriented API (Figure/Axes), along with best practices for creating publication-quality visualizations.

## When to Use This Skill

This skill should be used when:
- Creating any type of plot or chart (line, scatter, bar, histogram, heatmap, contour, etc.)
- Generating scientific or statistical visualizations
- Customizing plot appearance (colors, styles, labels, legends)
- Creating multi-panel figures with subplots
- Exporting visualizations to various formats (PNG, PDF, SVG, etc.)
- Building interactive plots or animations
- Working with 3D visualizations
- Integrating plots into Jupyter notebooks or GUI applications

## Core Concepts

### The Matplotlib Hierarchy

Matplotlib uses a hierarchical structure of objects:

1. **Figure** - The top-level container for all plot elements
2. **Axes** - The actual plotting area where data is displayed (one Figure can contain multiple Axes)
3. **Artist** - Everything visible on the figure (lines, text, ticks, etc.)
4. **Axis** - The number line objects (x-axis, y-axis) that handle ticks and labels

### Two Interfaces

**1. pyplot Interface (Implicit, MATLAB-style)**
```python
import matplotlib.pyplot as plt

plt.plot([1, 2, 3, 4])
plt.ylabel('some numbers')
plt.show()
```
- Convenient for quick, simple plots
- Maintains state automatically
- Good for interactive work and simple scripts

**2. Object-Oriented Interface (Explicit)**
```python
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
ax.plot([1, 2, 3, 4])
ax.set_ylabel('some numbers')
plt.show()
```
- **Recommended for most use cases**
- More explicit control over figure and axes
- Better for complex figures with multiple subplots
- Easier to maintain and debug

## Common Workflows

### 1. Basic Plot Creation

**Single plot workflow:**
```python
import matplotlib.pyplot as plt
import numpy as np

# Create figure and axes (OO interface - RECOMMENDED)
fig, ax = plt.subplots(figsize=(10, 6))

# Generate and plot data
x = np.linspace(0, 2*np.pi, 100)
ax.plot(x, np.sin(x), label='sin(x)')
ax.plot(x, np.cos(x), label='cos(x)')

# Customize
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Trigonometric Functions')
ax.legend()
ax.grid(True, alpha=0.3)

# Save and/or display
plt.savefig('plot.png', dpi=300, bbox_inches='tight')
plt.show()
```

### 2. Multiple Subplots

**Creating subplot layouts:**
```python
# Method 1: Regular grid
fig, axes = plt.subplots(2, 2, figsize=(12, 10))
axes[0, 0].plot(x, y1)
axes[0, 1].scatter(x, y2)
axes[1, 0].bar(categories, values)
axes[1, 1].hist(data, bins=30)

# Method 2: Mosaic layout (more flexible)
fig, axes = plt.subplot_mosaic([['left', 'right_top'],
                                 ['left', 'right_bottom']],
                                figsize=(10, 8))
axes['left'].plot(x, y)
axes['right_top'].scatter(x, y)
axes['right_bottom'].hist(data)

# Method 3: GridSpec (maximum control)
from matplotlib.gridspec import GridSpec
fig = plt.figure(figsize=(12, 8))
gs = GridSpec(3, 3, figure=fig)
ax1 = fig.add_subplot(gs[0, :])  # Top row, all columns
ax2 = fig.add_subplot(gs[1:, 0])  # Bottom two rows, first column
ax3 = fig.add_subplot(gs[1:, 1:])  # Bottom two rows, last two columns
```

### 3. Plot Types and Use Cases

**Line plots** - Time series, continuous data, trends
```python
ax.plot(x, y, linewidth=2, linestyle='--', marker='o', color='blue')
```

**Scatter plots** - Relationships between variables, correlations
```python
ax.scatter(x, y, s=sizes, c=colors, alpha=0.6, cmap='viridis')
```

**Bar charts** - Categorical comparisons
```python
ax.bar(categories, values, color='steelblue', edgecolor='black')
# For horizontal bars:
ax.barh(categories, values)
```

**Histograms** - Distributions
```python
ax.hist(data, bins=30, edgecolor='black', alpha=0.7)
```

**Heatmaps** - Matrix data, correlations
```python
im = ax.imshow(matrix, cmap='coolwarm', aspect='auto')
plt.colorbar(im, ax=ax)
```

**Contour plots** - 3D data on 2D plane
```python
contour = ax.contour(X, Y, Z, levels=10)
ax.clabel(contour, inline=True, fontsize=8)
```

**Box plots** - Statistical distributions
```python
ax.boxplot([data1, data2, data3], labels=['A', 'B', 'C'])
```

**Violin plots** - Distribution densities
```python
ax.violinplot([data1, data2, data3], positions=[1, 2, 3])
```

For comprehensive plot type examples and variations, refer to `references/plot_types.md`.

### 4. Styling and Customization

**Color specification methods:**
- Named colors: `'red'`, `'blue'`, `'steelblue'`
- Hex codes: `'#FF5733'`
- RGB tuples: `(0.1, 0.2, 0.3)`
- Colormaps: `cmap='viridis'`, `cmap='plasma'`, `cmap='coolwarm'`

**Using style sheets:**
```python
plt.style.use('seaborn-v0_8-darkgrid')  # Apply predefined style
# Available styles: 'ggplot', 'bmh', 'fivethirtyeight', etc.
print(plt.style.available)  # List all available styles
```

**Customizing with rcParams:**
```python
plt.rcParams['font.size'] = 12
plt.rcParams['axes.labelsize'] = 14
plt.rcParams['axes.titlesize'] = 16
plt.rcParams['xtick.labelsize'] = 10
plt.rcParams['ytick.labelsize'] = 10
plt.rcParams['legend.fontsize'] = 12
plt.rcParams['figure.titlesize'] = 18
```

**Text and annotations:**
```python
ax.text(x, y, 'annotation', fontsize=12, ha='center')
ax.annotate('important point', xy=(x, y), xytext=(x+1, y+1),
            arrowprops=dict(arrowstyle='->', color='red'))
```

For detailed styling options and colormap guidelines, see `references/styling_guide.md`.

### 5. Saving Figures

**Export to various formats:**
```python
# High-resolution PNG for presentations/papers
plt.savefig('figure.png', dpi=300, bbox_inches='tight', facecolor='white')

# Vector format for publications (scalable)
plt.savefig('figure.pdf', bbox_inches='tight')
plt.savefig('figure.svg', bbox_inches='tight')

# Transparent background
plt.savefig('figure.png', dpi=300, bbox_inches='tight', transparent=True)
```

**Important parameters:**
- `dpi`: Resolution (300 for publications, 150 for web, 72 for screen)
- `bbox_inches='tight'`: Removes excess whitespace
- `facecolor='white'`: Ensures white background (useful for transparent themes)
- `transparent=True`: Transparent background

### 6. Working with 3D Plots

```python
from mpl_toolkits.mplot3d import Axes3D

fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')

# Surface plot
ax.plot_surface(X, Y, Z, cmap='viridis')

# 3D scatter
ax.scatter(x, y, z, c=colors, marker='o')

# 3D line plot
ax.plot(x, y, z, linewidth=2)

# Labels
ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
```

## Best Practices

### 1. Interface Selection
- **Use the object-oriented interface** (fig, ax = plt.subplots()) for production code
- Reserve pyplot interface for quick interactive exploration only
- Always create figures explicitly rather than relying on implicit state

### 2. Figure Size and DPI
- Set figsize at creation: `fig, ax = plt.subplots(figsize=(10, 6))`
- Use appropriate DPI for output medium:
  - Screen/notebook: 72-100 dpi
  - Web: 150 dpi
  - Print/publications: 300 dpi

### 3. Layout Management
- Use `constrained_layout=True` or `tight_layout()` to prevent overlapping elements
- `fig, ax = plt.subplots(constrained_layout=True)` is recommended for automatic spacing

### 4. Colormap Selection
- **Sequential** (viridis, plasma, inferno): Ordered data with consistent progression
- **Diverging** (coolwarm, RdBu): Data with meaningful center point (e.g., zero)
- **Qualitative** (tab10, Set3): Categorical/nominal data
- Avoid rainbow colormaps (jet) - they are not perceptually uniform

### 5. Accessibility
- Use colorblind-friendly colormaps (viridis, cividis)
- Add patterns/hatching for bar charts in addition to colors
- Ensure sufficient contrast between elements
- Include descriptive labels and legends

### 6. Performance
- For large datasets, use `rasterized=True` in plot calls to reduce file size
- Use appropriate data reduction before plotting (e.g., downsample dense time series)
- For animations, use blitting for better performance

### 7. Code Organization
```python
# Good practice: Clear structure
def create_analysis_plot(data, title):
    """Create standardized analysis plot."""
    fig, ax = plt.subplots(figsize=(10, 6), constrained_layout=True)

    # Plot data
    ax.plot(data['x'], data['y'], linewidth=2)

    # Customize
    ax.set_xlabel('X Axis Label', fontsize=12)
    ax.set_ylabel('Y Axis Label', fontsize=12)
    ax.set_title(title, fontsize=14, fontweight='bold')
    ax.grid(True, alpha=0.3)

    return fig, ax

# Use the function
fig, ax = create_analysis_plot(my_data, 'My Analysis')
plt.savefig('analysis.png', dpi=300, bbox_inches='tight')
```

## Quick Reference Scripts

This skill includes helper scripts in the `scripts/` directory:

### `plot_template.py`
Template script demonstrating various plot types with best practices. Use this as a starting point for creating new visualizations.

**Usage:**
```bash
python scripts/plot_template.py
```

### `style_configurator.py`
Interactive utility to configure matplotlib style preferences and generate custom style sheets.

**Usage:**
```bash
python scripts/style_configurator.py
```

## Detailed References

For comprehensive information, consult the reference documents:

- **`references/plot_types.md`** - Complete catalog of plot types with code examples and use cases
- **`references/styling_guide.md`** - Detailed styling options, colormaps, and customization
- **`references/api_reference.md`** - Core classes and methods reference
- **`references/common_issues.md`** - Troubleshooting guide for common problems

## Integration with Other Tools

Matplotlib integrates well with:
- **NumPy/Pandas** - Direct plotting from arrays and DataFrames
- **Seaborn** - High-level statistical visualizations built on matplotlib
- **Jupyter** - Interactive plotting with `%matplotlib inline` or `%matplotlib widget`
- **GUI frameworks** - Embedding in Tkinter, Qt, wxPython applications

## Common Gotchas

1. **Overlapping elements**: Use `constrained_layout=True` or `tight_layout()`
2. **State confusion**: Use OO interface to avoid pyplot state machine issues
3. **Memory issues with many figures**: Close figures explicitly with `plt.close(fig)`
4. **Font warnings**: Install fonts or suppress warnings with `plt.rcParams['font.sans-serif']`
5. **DPI confusion**: Remember that figsize is in inches, not pixels: `pixels = dpi * inches`

## Additional Resources

- Official documentation: https://matplotlib.org/
- Gallery: https://matplotlib.org/stable/gallery/index.html
- Cheatsheets: https://matplotlib.org/cheatsheets/
- Tutorials: https://matplotlib.org/stable/tutorials/index.html

Overview

This skill explains how to use matplotlib, Python's foundational plotting library, to create publication-quality static, animated, and interactive visualizations. It covers both the pyplot (MATLAB-style) and the recommended object-oriented Figure/Axes APIs, plus export options for PNG, PDF, and SVG. The guidance focuses on reproducible workflows, styling, subplots, 3D plotting, and integration with data tools.

How this skill works

The skill shows how to build plots by creating Figure and Axes objects and adding Artists (lines, markers, text). It demonstrates common plot types (line, scatter, bar, histogram, heatmap, contour, box/violin, 3D) and layout strategies (subplots, mosaic, GridSpec). It also explains styling via rcParams and style sheets, saving high-resolution or vector outputs, and performance tips for large datasets or animations.

When to use it

  • When you need line, scatter, bar, histogram, heatmap, contour, or 3D plots
  • To create multi-panel figures for analysis or publication
  • When exporting figures to PNG, PDF, or SVG for presentations or papers
  • When customizing plot appearance, labels, legends, and annotations
  • Embedding plots in Jupyter notebooks or GUI applications
  • When preparing accessible, colorblind-friendly visualizations

Best practices

  • Prefer the object-oriented API (fig, ax = plt.subplots()) for production code and complex figures
  • Set figsize and dpi when creating figures; use 300 dpi for print-quality exports
  • Use constrained_layout=True or tight_layout() to avoid overlapping labels and legends
  • Choose perceptually uniform or colorblind-friendly colormaps (viridis, cividis); avoid rainbow/jet
  • Rasterize heavy elements for large datasets and downsample dense time series before plotting
  • Close unused figures with plt.close(fig) to avoid memory growth in long-running scripts

Example use cases

  • Plotting time series with multiple series and shared axes for publication
  • Creating a 2x2 study results panel with different plot types using subplot_mosaic or GridSpec
  • Rendering a correlation heatmap with colorbar and annotated cell values for a paper
  • Generating a 3D surface and scatter combination for exploratory scientific data
  • Exporting high-resolution SVG or PDF figures for journal submission

FAQ

Which interface should I use: pyplot or object-oriented?

Use the object-oriented interface for reproducible, maintainable code and multi-axes figures; pyplot is fine for quick interactive work.

What dpi should I use when saving figures?

Use 300 dpi for print/publications, 150 dpi for web, and 72–100 dpi for screen or quick notebooks.