home / skills / jackspace / claudeskillz / scientific-pkg-anndata

scientific-pkg-anndata skill

/skills/scientific-pkg-anndata

This skill helps you manage annotated data matrices in Python with AnnData, enabling efficient I/O, subsetting, and integration with Scanpy and scverse.

npx playbooks add skill jackspace/claudeskillz --skill scientific-pkg-anndata

Review the files below or copy the command above to add this skill to your agents.

Files (3)
SKILL.md
9.9 KB
---
name: anndata
description: This skill should be used when working with annotated data matrices in Python, particularly for single-cell genomics analysis, managing experimental measurements with metadata, or handling large-scale biological datasets. Use when tasks involve AnnData objects, h5ad files, single-cell RNA-seq data, or integration with scanpy/scverse tools.
---

# AnnData

## Overview

AnnData is a Python package for handling annotated data matrices, storing experimental measurements (X) alongside observation metadata (obs), variable metadata (var), and multi-dimensional annotations (obsm, varm, obsp, varp, uns). Originally designed for single-cell genomics through Scanpy, it now serves as a general-purpose framework for any annotated data requiring efficient storage, manipulation, and analysis.

## When to Use This Skill

Use this skill when:
- Creating, reading, or writing AnnData objects
- Working with h5ad, zarr, or other genomics data formats
- Performing single-cell RNA-seq analysis
- Managing large datasets with sparse matrices or backed mode
- Concatenating multiple datasets or experimental batches
- Subsetting, filtering, or transforming annotated data
- Integrating with scanpy, scvi-tools, or other scverse ecosystem tools

## Installation

```bash
pip install anndata

# With optional dependencies
pip install anndata[dev,test,doc]
```

## Quick Start

### Creating an AnnData object
```python
import anndata as ad
import numpy as np
import pandas as pd

# Minimal creation
X = np.random.rand(100, 2000)  # 100 cells × 2000 genes
adata = ad.AnnData(X)

# With metadata
obs = pd.DataFrame({
    'cell_type': ['T cell', 'B cell'] * 50,
    'sample': ['A', 'B'] * 50
}, index=[f'cell_{i}' for i in range(100)])

var = pd.DataFrame({
    'gene_name': [f'Gene_{i}' for i in range(2000)]
}, index=[f'ENSG{i:05d}' for i in range(2000)])

adata = ad.AnnData(X=X, obs=obs, var=var)
```

### Reading data
```python
# Read h5ad file
adata = ad.read_h5ad('data.h5ad')

# Read with backed mode (for large files)
adata = ad.read_h5ad('large_data.h5ad', backed='r')

# Read other formats
adata = ad.read_csv('data.csv')
adata = ad.read_loom('data.loom')
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')
```

### Writing data
```python
# Write h5ad file
adata.write_h5ad('output.h5ad')

# Write with compression
adata.write_h5ad('output.h5ad', compression='gzip')

# Write other formats
adata.write_zarr('output.zarr')
adata.write_csvs('output_dir/')
```

### Basic operations
```python
# Subset by conditions
t_cells = adata[adata.obs['cell_type'] == 'T cell']

# Subset by indices
subset = adata[0:50, 0:100]

# Add metadata
adata.obs['quality_score'] = np.random.rand(adata.n_obs)
adata.var['highly_variable'] = np.random.rand(adata.n_vars) > 0.8

# Access dimensions
print(f"{adata.n_obs} observations × {adata.n_vars} variables")
```

## Core Capabilities

### 1. Data Structure

Understand the AnnData object structure including X, obs, var, layers, obsm, varm, obsp, varp, uns, and raw components.

**See**: `references/data_structure.md` for comprehensive information on:
- Core components (X, obs, var, layers, obsm, varm, obsp, varp, uns, raw)
- Creating AnnData objects from various sources
- Accessing and manipulating data components
- Memory-efficient practices

### 2. Input/Output Operations

Read and write data in various formats with support for compression, backed mode, and cloud storage.

**See**: `references/io_operations.md` for details on:
- Native formats (h5ad, zarr)
- Alternative formats (CSV, MTX, Loom, 10X, Excel)
- Backed mode for large datasets
- Remote data access
- Format conversion
- Performance optimization

Common commands:
```python
# Read/write h5ad
adata = ad.read_h5ad('data.h5ad', backed='r')
adata.write_h5ad('output.h5ad', compression='gzip')

# Read 10X data
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')

# Read MTX format
adata = ad.read_mtx('matrix.mtx').T
```

### 3. Concatenation

Combine multiple AnnData objects along observations or variables with flexible join strategies.

**See**: `references/concatenation.md` for comprehensive coverage of:
- Basic concatenation (axis=0 for observations, axis=1 for variables)
- Join types (inner, outer)
- Merge strategies (same, unique, first, only)
- Tracking data sources with labels
- Lazy concatenation (AnnCollection)
- On-disk concatenation for large datasets

Common commands:
```python
# Concatenate observations (combine samples)
adata = ad.concat(
    [adata1, adata2, adata3],
    axis=0,
    join='inner',
    label='batch',
    keys=['batch1', 'batch2', 'batch3']
)

# Concatenate variables (combine modalities)
adata = ad.concat([adata_rna, adata_protein], axis=1)

# Lazy concatenation
from anndata.experimental import AnnCollection
collection = AnnCollection(
    ['data1.h5ad', 'data2.h5ad'],
    join_obs='outer',
    label='dataset'
)
```

### 4. Data Manipulation

Transform, subset, filter, and reorganize data efficiently.

**See**: `references/manipulation.md` for detailed guidance on:
- Subsetting (by indices, names, boolean masks, metadata conditions)
- Transposition
- Copying (full copies vs views)
- Renaming (observations, variables, categories)
- Type conversions (strings to categoricals, sparse/dense)
- Adding/removing data components
- Reordering
- Quality control filtering

Common commands:
```python
# Subset by metadata
filtered = adata[adata.obs['quality_score'] > 0.8]
hv_genes = adata[:, adata.var['highly_variable']]

# Transpose
adata_T = adata.T

# Copy vs view
view = adata[0:100, :]  # View (lightweight reference)
copy = adata[0:100, :].copy()  # Independent copy

# Convert strings to categoricals
adata.strings_to_categoricals()
```

### 5. Best Practices

Follow recommended patterns for memory efficiency, performance, and reproducibility.

**See**: `references/best_practices.md` for guidelines on:
- Memory management (sparse matrices, categoricals, backed mode)
- Views vs copies
- Data storage optimization
- Performance optimization
- Working with raw data
- Metadata management
- Reproducibility
- Error handling
- Integration with other tools
- Common pitfalls and solutions

Key recommendations:
```python
# Use sparse matrices for sparse data
from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)

# Convert strings to categoricals
adata.strings_to_categoricals()

# Use backed mode for large files
adata = ad.read_h5ad('large.h5ad', backed='r')

# Store raw before filtering
adata.raw = adata.copy()
adata = adata[:, adata.var['highly_variable']]
```

## Integration with Scverse Ecosystem

AnnData serves as the foundational data structure for the scverse ecosystem:

### Scanpy (Single-cell analysis)
```python
import scanpy as sc

# Preprocessing
sc.pp.filter_cells(adata, min_genes=200)
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)

# Dimensionality reduction
sc.pp.pca(adata, n_comps=50)
sc.pp.neighbors(adata, n_neighbors=15)
sc.tl.umap(adata)
sc.tl.leiden(adata)

# Visualization
sc.pl.umap(adata, color=['cell_type', 'leiden'])
```

### Muon (Multimodal data)
```python
import muon as mu

# Combine RNA and protein data
mdata = mu.MuData({'rna': adata_rna, 'protein': adata_protein})
```

### PyTorch integration
```python
from anndata.experimental import AnnLoader

# Create DataLoader for deep learning
dataloader = AnnLoader(adata, batch_size=128, shuffle=True)

for batch in dataloader:
    X = batch.X
    # Train model
```

## Common Workflows

### Single-cell RNA-seq analysis
```python
import anndata as ad
import scanpy as sc

# 1. Load data
adata = ad.read_10x_h5('filtered_feature_bc_matrix.h5')

# 2. Quality control
adata.obs['n_genes'] = (adata.X > 0).sum(axis=1)
adata.obs['n_counts'] = adata.X.sum(axis=1)
adata = adata[adata.obs['n_genes'] > 200]
adata = adata[adata.obs['n_counts'] < 50000]

# 3. Store raw
adata.raw = adata.copy()

# 4. Normalize and filter
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.highly_variable_genes(adata, n_top_genes=2000)
adata = adata[:, adata.var['highly_variable']]

# 5. Save processed data
adata.write_h5ad('processed.h5ad')
```

### Batch integration
```python
# Load multiple batches
adata1 = ad.read_h5ad('batch1.h5ad')
adata2 = ad.read_h5ad('batch2.h5ad')
adata3 = ad.read_h5ad('batch3.h5ad')

# Concatenate with batch labels
adata = ad.concat(
    [adata1, adata2, adata3],
    label='batch',
    keys=['batch1', 'batch2', 'batch3'],
    join='inner'
)

# Apply batch correction
import scanpy as sc
sc.pp.combat(adata, key='batch')

# Continue analysis
sc.pp.pca(adata)
sc.pp.neighbors(adata)
sc.tl.umap(adata)
```

### Working with large datasets
```python
# Open in backed mode
adata = ad.read_h5ad('100GB_dataset.h5ad', backed='r')

# Filter based on metadata (no data loading)
high_quality = adata[adata.obs['quality_score'] > 0.8]

# Load filtered subset
adata_subset = high_quality.to_memory()

# Process subset
process(adata_subset)

# Or process in chunks
chunk_size = 1000
for i in range(0, adata.n_obs, chunk_size):
    chunk = adata[i:i+chunk_size, :].to_memory()
    process(chunk)
```

## Troubleshooting

### Out of memory errors
Use backed mode or convert to sparse matrices:
```python
# Backed mode
adata = ad.read_h5ad('file.h5ad', backed='r')

# Sparse matrices
from scipy.sparse import csr_matrix
adata.X = csr_matrix(adata.X)
```

### Slow file reading
Use compression and appropriate formats:
```python
# Optimize for storage
adata.strings_to_categoricals()
adata.write_h5ad('file.h5ad', compression='gzip')

# Use Zarr for cloud storage
adata.write_zarr('file.zarr', chunks=(1000, 1000))
```

### Index alignment issues
Always align external data on index:
```python
# Wrong
adata.obs['new_col'] = external_data['values']

# Correct
adata.obs['new_col'] = external_data.set_index('cell_id').loc[adata.obs_names, 'values']
```

## Additional Resources

- **Official documentation**: https://anndata.readthedocs.io/
- **Scanpy tutorials**: https://scanpy.readthedocs.io/
- **Scverse ecosystem**: https://scverse.org/
- **GitHub repository**: https://github.com/scverse/anndata

Overview

This skill provides practical guidance and utilities for working with AnnData annotated data matrices in Python, focused on single-cell genomics and large biological datasets. It covers creating, reading, writing, subsetting, concatenating, and integrating AnnData objects with the scverse ecosystem. Use it to manage metadata-rich experiments, optimize storage, and integrate with tools like Scanpy and Muon.

How this skill works

The skill inspects and manipulates AnnData objects and their components (X, obs, var, layers, obsm, varm, obsp, varp, uns, raw). It provides routines for I/O (h5ad, zarr, 10X, Loom, CSV), backed mode for on-disk workflows, concatenation strategies, and memory-efficient transformations (sparse matrices, categoricals, views vs copies). It also outlines integration points for preprocessing, dimensionality reduction, batch correction, and PyTorch DataLoader usage.

When to use it

  • Loading or saving single-cell datasets (h5ad, zarr, 10X, Loom)
  • Creating or annotating AnnData objects with obs/var metadata
  • Working with very large datasets (backed mode, chunked processing)
  • Concatenating multiple batches or modalities and tracking labels
  • Preparing data for Scanpy, scvi-tools, Muon, or PyTorch models
  • Subsetting, filtering, and applying memory-efficient transformations

Best practices

  • Use sparse matrices for sparse count data and convert strings to categoricals to save memory
  • Use backed='r' for very large h5ad files and load filtered subsets with to_memory()
  • Store raw before aggressive filtering so you can recover original measurements
  • Prefer views when possible for speed, and call .copy() when you need an independent object
  • Label batches on concatenation and choose join strategies (inner/outer) deliberately
  • Use Zarr for cloud-friendly, chunked storage and gzip compression for smaller files

Example use cases

  • Load 10X data, run QC, normalize, select highly variable genes, and save processed h5ad
  • Concatenate three experimental batches with a batch label and apply batch correction (Combat) before UMAP and clustering
  • Open a 100GB h5ad in backed mode, filter by metadata, then load only the high-quality subset into memory for analysis
  • Create a MuData object to combine RNA and protein modalities, then feed a modality to a PyTorch AnnLoader for deep learning training
  • Convert dense matrices to scipy CSR, convert metadata to categoricals, and rewrite compressed h5ad for efficient sharing

FAQ

When should I use backed mode vs loading into memory?

Use backed mode for datasets that exceed available RAM or when iterating/chunking. Load subsets into memory with .to_memory() for steps that require full in-memory operations.

How do I avoid index misalignment when adding external metadata?

Set the external data index to match adata.obs_names and use .loc[adata.obs_names] when assigning columns to ensure correct alignment.