home / skills / gracefullight / stock-checker / backtesting-trading-strategies

backtesting-trading-strategies skill

/.agent/skills/backtesting-trading-strategies

This skill backtests crypto and traditional strategies against historical data, delivering performance metrics, equity curves, and parameter optimization.

npx playbooks add skill gracefullight/stock-checker --skill backtesting-trading-strategies

Review the files below or copy the command above to add this skill to your agents.

Files (10)
SKILL.md
6.2 KB
---
name: backtesting-trading-strategies
description: |
  Backtest crypto and traditional trading strategies against historical data.
  Calculates performance metrics (Sharpe, Sortino, max drawdown), generates equity curves,
  and optimizes strategy parameters. Use when user wants to test a trading strategy,
  validate signals, or compare approaches.
  Trigger with phrases like "backtest strategy", "test trading strategy", "historical performance",
  "simulate trades", "optimize parameters", or "validate signals".
allowed-tools: Read, Write, Edit, Grep, Glob, Bash(python:*)
version: 2.0.0
author: Jeremy Longshore <[email protected]>
license: MIT
---

# Backtesting Trading Strategies

## Overview

Validate trading strategies against historical data before risking real capital. This skill provides a complete backtesting framework with 8 built-in strategies, comprehensive performance metrics, and parameter optimization.

**Key Features:**
- 8 pre-built trading strategies (SMA, EMA, RSI, MACD, Bollinger, Breakout, Mean Reversion, Momentum)
- Full performance metrics (Sharpe, Sortino, Calmar, VaR, max drawdown)
- Parameter grid search optimization
- Equity curve visualization
- Trade-by-trade analysis

## Prerequisites

Install required dependencies:

```bash
pip install pandas numpy yfinance matplotlib
```

Optional for advanced features:
```bash
pip install ta-lib scipy scikit-learn
```

## Instructions

### Step 1: Fetch Historical Data

```bash
python {baseDir}/scripts/fetch_data.py --symbol BTC-USD --period 2y --interval 1d
```

Data is cached to `{baseDir}/data/{symbol}_{interval}.csv` for reuse.

### Step 2: Run Backtest

Basic backtest with default parameters:

```bash
python {baseDir}/scripts/backtest.py --strategy sma_crossover --symbol BTC-USD --period 1y
```

Advanced backtest with custom parameters:

```bash
# Example: backtest with specific date range
python {baseDir}/scripts/backtest.py \
  --strategy rsi_reversal \
  --symbol ETH-USD \
  --period 1y \
  --capital 10000 \
  --params '{"period": 14, "overbought": 70, "oversold": 30}'
```

### Step 3: Analyze Results

Results are saved to `{baseDir}/reports/` including:
- `*_summary.txt` - Performance metrics
- `*_trades.csv` - Trade log
- `*_equity.csv` - Equity curve data
- `*_chart.png` - Visual equity curve

### Step 4: Optimize Parameters

Find optimal parameters via grid search:

```bash
python {baseDir}/scripts/optimize.py \
  --strategy sma_crossover \
  --symbol BTC-USD \
  --period 1y \
  --param-grid '{"fast_period": [10, 20, 30], "slow_period": [50, 100, 200]}'
```

## Output

### Performance Metrics

| Metric | Description |
|--------|-------------|
| Total Return | Overall percentage gain/loss |
| CAGR | Compound annual growth rate |
| Sharpe Ratio | Risk-adjusted return (target: >1.5) |
| Sortino Ratio | Downside risk-adjusted return |
| Calmar Ratio | Return divided by max drawdown |

### Risk Metrics

| Metric | Description |
|--------|-------------|
| Max Drawdown | Largest peak-to-trough decline |
| VaR (95%) | Value at Risk at 95% confidence |
| CVaR (95%) | Expected loss beyond VaR |
| Volatility | Annualized standard deviation |

### Trade Statistics

| Metric | Description |
|--------|-------------|
| Total Trades | Number of round-trip trades |
| Win Rate | Percentage of profitable trades |
| Profit Factor | Gross profit divided by gross loss |
| Expectancy | Expected value per trade |

### Example Output

```
================================================================================
                    BACKTEST RESULTS: SMA CROSSOVER
                    BTC-USD | [start_date] to [end_date]
================================================================================
 PERFORMANCE                          | RISK
 Total Return:        +47.32%         | Max Drawdown:      -18.45%
 CAGR:                +47.32%         | VaR (95%):         -2.34%
 Sharpe Ratio:        1.87            | Volatility:        42.1%
 Sortino Ratio:       2.41            | Ulcer Index:       8.2
--------------------------------------------------------------------------------
 TRADE STATISTICS
 Total Trades:        24              | Profit Factor:     2.34
 Win Rate:            58.3%           | Expectancy:        $197.17
 Avg Win:             $892.45         | Max Consec. Losses: 3
================================================================================
```

## Supported Strategies

| Strategy | Description | Key Parameters |
|----------|-------------|----------------|
| `sma_crossover` | Simple moving average crossover | `fast_period`, `slow_period` |
| `ema_crossover` | Exponential MA crossover | `fast_period`, `slow_period` |
| `rsi_reversal` | RSI overbought/oversold | `period`, `overbought`, `oversold` |
| `macd` | MACD signal line crossover | `fast`, `slow`, `signal` |
| `bollinger_bands` | Mean reversion on bands | `period`, `std_dev` |
| `breakout` | Price breakout from range | `lookback`, `threshold` |
| `mean_reversion` | Return to moving average | `period`, `z_threshold` |
| `momentum` | Rate of change momentum | `period`, `threshold` |

## Configuration

Create `{baseDir}/config/settings.yaml`:

```yaml
data:
  provider: yfinance
  cache_dir: ./data

backtest:
  default_capital: 10000
  commission: 0.001     # 0.1% per trade
  slippage: 0.0005      # 0.05% slippage

risk:
  max_position_size: 0.95
  stop_loss: null       # Optional fixed stop loss
  take_profit: null     # Optional fixed take profit
```

## Error Handling

See `{baseDir}/references/errors.md` for common issues and solutions.

## Examples

See `{baseDir}/references/examples.md` for detailed usage examples including:
- Multi-asset comparison
- Walk-forward analysis
- Parameter optimization workflows

## Files

| File | Purpose |
|------|---------|
| `scripts/backtest.py` | Main backtesting engine |
| `scripts/fetch_data.py` | Historical data fetcher |
| `scripts/strategies.py` | Strategy definitions |
| `scripts/metrics.py` | Performance calculations |
| `scripts/optimize.py` | Parameter optimization |

## Resources

- [yfinance](https://github.com/ranaroussi/yfinance) - Yahoo Finance data
- [TA-Lib](https://ta-lib.org/) - Technical analysis library
- [QuantStats](https://github.com/ranaroussi/quantstats) - Portfolio analytics

Overview

This skill provides a full backtesting framework to validate crypto and traditional trading strategies against historical market data. It runs built-in strategies, computes standard performance and risk metrics, generates equity curves, and can optimize parameter sets via grid search. Use it to test ideas, compare approaches, and verify signals before deploying capital.

How this skill works

Fetch historical price data for one or multiple tickers, then simulate trades according to a chosen strategy (SMA, EMA, RSI, MACD, Bollinger, Breakout, Mean Reversion, Momentum). The engine records each trade, builds an equity curve, and computes performance metrics such as Sharpe, Sortino, CAGR, max drawdown, VaR and trade statistics. An optimizer can sweep parameter grids to identify candidate configurations.

When to use it

  • Validate a new trading idea on historical data before live trading
  • Compare multiple strategies or parameter sets on the same time period
  • Estimate risk and drawdown characteristics for position sizing
  • Generate equity curves and trade logs for reporting or review
  • Run walk-forward or multi-asset comparison workflows

Best practices

  • Use out-of-sample and walk-forward tests to avoid overfitting
  • Include transaction costs and slippage to produce realistic results
  • Test multiple timeframes and market regimes (bull/bear) for robustness
  • Limit parameter grid size or use randomized search to reduce data-snooping
  • Inspect trade-level logs and equity curves, not only summary metrics

Example use cases

  • Backtest an SMA crossover on BTC-USD for the last 2 years and review equity curve and drawdown
  • Optimize fast/slow MA periods with grid search to find robust parameter pairs
  • Compare RSI reversal versus mean reversion strategy across multiple altcoins
  • Produce a trade-by-trade CSV and summary report for compliance or performance review
  • Estimate portfolio volatility and VaR for a set of tickers before allocation

FAQ

What performance metrics are computed?

The engine computes total return, CAGR, Sharpe, Sortino, Calmar, max drawdown, VaR, CVaR, volatility, win rate, profit factor and expectancy.

Can I include commissions and slippage?

Yes. Backtests accept commission and slippage settings so results account for realistic trading costs.

How do I optimize strategy parameters?

Use the grid search optimizer to sweep parameter combinations; limit grid size and validate top candidates out-of-sample to avoid overfitting.