home / skills / gentleman-programming / gentleman-skills / ai-sdk-5
This skill guides you through AI SDK 5 chat integration, highlighting breaking changes from v4 and enabling smooth transport-based implementations.
npx playbooks add skill gentleman-programming/gentleman-skills --skill ai-sdk-5Review the files below or copy the command above to add this skill to your agents.
---
name: ai-sdk-5
description: >
Vercel AI SDK 5 patterns.
Trigger: When building AI chat features - breaking changes from v4.
license: Apache-2.0
metadata:
author: gentleman-programming
version: "1.0"
---
## Breaking Changes from AI SDK 4
```typescript
// ❌ AI SDK 4 (OLD)
import { useChat } from "ai";
const { messages, handleSubmit, input, handleInputChange } = useChat({
api: "/api/chat",
});
// ✅ AI SDK 5 (NEW)
import { useChat } from "@ai-sdk/react";
import { DefaultChatTransport } from "ai";
const { messages, sendMessage } = useChat({
transport: new DefaultChatTransport({ api: "/api/chat" }),
});
```
## Client Setup
```typescript
import { useChat } from "@ai-sdk/react";
import { DefaultChatTransport } from "ai";
import { useState } from "react";
export function Chat() {
const [input, setInput] = useState("");
const { messages, sendMessage, isLoading, error } = useChat({
transport: new DefaultChatTransport({ api: "/api/chat" }),
});
const handleSubmit = (e: React.FormEvent) => {
e.preventDefault();
if (!input.trim()) return;
sendMessage({ text: input });
setInput("");
};
return (
<div>
<div>
{messages.map((message) => (
<Message key={message.id} message={message} />
))}
</div>
<form onSubmit={handleSubmit}>
<input
value={input}
onChange={(e) => setInput(e.target.value)}
placeholder="Type a message..."
disabled={isLoading}
/>
<button type="submit" disabled={isLoading}>
Send
</button>
</form>
{error && <div>Error: {error.message}</div>}
</div>
);
}
```
## UIMessage Structure (v5)
```typescript
// ❌ Old: message.content was a string
// ✅ New: message.parts is an array
interface UIMessage {
id: string;
role: "user" | "assistant" | "system";
parts: MessagePart[];
}
type MessagePart =
| { type: "text"; text: string }
| { type: "image"; image: string }
| { type: "tool-call"; toolCallId: string; toolName: string; args: unknown }
| { type: "tool-result"; toolCallId: string; result: unknown };
// Extract text from parts
function getMessageText(message: UIMessage): string {
return message.parts
.filter((part): part is { type: "text"; text: string } => part.type === "text")
.map((part) => part.text)
.join("");
}
// Render message
function Message({ message }: { message: UIMessage }) {
return (
<div className={message.role === "user" ? "user" : "assistant"}>
{message.parts.map((part, index) => {
if (part.type === "text") {
return <p key={index}>{part.text}</p>;
}
if (part.type === "image") {
return <img key={index} src={part.image} alt="" />;
}
return null;
})}
</div>
);
}
```
## Server-Side (Route Handler)
```typescript
// app/api/chat/route.ts
import { openai } from "@ai-sdk/openai";
import { streamText } from "ai";
export async function POST(req: Request) {
const { messages } = await req.json();
const result = await streamText({
model: openai("gpt-4o"),
messages,
system: "You are a helpful assistant.",
});
return result.toDataStreamResponse();
}
```
## With LangChain
```typescript
// app/api/chat/route.ts
import { toUIMessageStream } from "@ai-sdk/langchain";
import { ChatOpenAI } from "@langchain/openai";
import { HumanMessage, AIMessage } from "@langchain/core/messages";
export async function POST(req: Request) {
const { messages } = await req.json();
const model = new ChatOpenAI({
modelName: "gpt-4o",
streaming: true,
});
// Convert UI messages to LangChain format
const langchainMessages = messages.map((m) => {
const text = m.parts
.filter((p) => p.type === "text")
.map((p) => p.text)
.join("");
return m.role === "user"
? new HumanMessage(text)
: new AIMessage(text);
});
const stream = await model.stream(langchainMessages);
return toUIMessageStream(stream).toDataStreamResponse();
}
```
## Streaming with Tools
```typescript
import { openai } from "@ai-sdk/openai";
import { streamText, tool } from "ai";
import { z } from "zod";
const result = await streamText({
model: openai("gpt-4o"),
messages,
tools: {
getWeather: tool({
description: "Get weather for a location",
parameters: z.object({
location: z.string().describe("City name"),
}),
execute: async ({ location }) => {
// Fetch weather data
return { temperature: 72, condition: "sunny" };
},
}),
},
});
```
## useCompletion (Text Generation)
```typescript
import { useCompletion } from "@ai-sdk/react";
import { DefaultCompletionTransport } from "ai";
const { completion, complete, isLoading } = useCompletion({
transport: new DefaultCompletionTransport({ api: "/api/complete" }),
});
// Trigger completion
await complete("Write a haiku about");
```
## Error Handling
```typescript
const { error, messages, sendMessage } = useChat({
transport: new DefaultChatTransport({ api: "/api/chat" }),
onError: (error) => {
console.error("Chat error:", error);
toast.error("Failed to send message");
},
});
// Display error
{error && (
<div className="error">
{error.message}
<button onClick={() => sendMessage({ text: lastInput })}>
Retry
</button>
</div>
)}
```
## Keywords
ai sdk, vercel ai, chat, streaming, langchain, openai, llm
This skill documents migration patterns and examples for Vercel AI SDK 5. It highlights breaking changes from v4, client and server usage, streaming, tool integration, LangChain interoperability, and error handling. Use it as a concise reference when upgrading or building AI chat and completion features with the new SDK.
The skill explains how the v5 SDK replaces legacy hooks and payload shapes: useChat now accepts a transport instance instead of an api string, messages use a parts array instead of a single content string, and streaming endpoints return DataStream-compatible responses. It shows client-side state and form handling, server route handlers that stream model responses, tool wiring with zod validation, and converting messages to and from LangChain formats.
How do I extract plain text from a v5 message?
Concatenate parts filtered for type 'text' and join their text values to form the message string.
What replaces the old useChat handlers like handleSubmit and input?
useChat now exposes messages, sendMessage, isLoading, and error; manage input state locally and call sendMessage({ text }) on submit.
How do I stream model responses from the server?
Use streamText with the chosen model and messages on the server, then return result.toDataStreamResponse() so the client receives streaming updates.