home / skills / frankxai / claude-skills-library / mcp-architecture

mcp-architecture skill

/free-skills/mcp-architecture

This skill helps you design and deploy MCP servers that enable standardized AI-to-data integrations across resources, tools, and prompts.

npx playbooks add skill frankxai/claude-skills-library --skill mcp-architecture

Review the files below or copy the command above to add this skill to your agents.

Files (1)
SKILL.md
10.7 KB
---
name: MCP Architecture Expert
description: Design and implement Model Context Protocol servers for standardized AI-to-data integration with resources, tools, prompts, and security best practices
version: 1.0.0
---

# MCP Architecture Expert Skill

## Purpose
Master the Model Context Protocol (MCP) to build standardized, reusable integrations between AI systems and data sources, eliminating the N×M integration problem.

## What is MCP?

### Model Context Protocol
Open standard (November 2024, Anthropic) for connecting AI systems to external data sources and tools through a unified protocol.

**The Problem:** N agents × M tools = N×M custom integrations
**The Solution:** N agents + M MCP servers = N+M integrations (any agent uses any tool)

## Architecture

```
┌─────────────┐
│  MCP Host   │  (Claude Desktop, IDEs, Apps)
│   ┌─────┐   │
│   │Client│──┼──┐
│   └─────┘   │  │
└─────────────┘  │
                 │ JSON-RPC 2.0
                 │
┌────────────────┼─────────────┐
│  MCP Server    ▼             │
│  ┌──────────────────┐        │
│  │  Resources       │        │
│  │  Tools           │        │
│  │  Prompts         │        │
│  └──────────────────┘        │
│         │                    │
│         ▼                    │
│  ┌──────────────────┐        │
│  │ Data Source      │        │
│  │ (DB, API, Files) │        │
│  └──────────────────┘        │
└─────────────────────────────┘
```

## Three Core Capabilities

### 1. Resources
**Purpose:** Expose data for AI to read

**Examples:**
- File contents
- Database records
- API responses
- Documentation

**Definition:**
```json
{
  "resources": [
    {
      "uri": "file:///docs/api-spec.md",
      "name": "API Specification",
      "mimeType": "text/markdown"
    },
    {
      "uri": "db://customers/12345",
      "name": "Customer Record",
      "mimeType": "application/json"
    }
  ]
}
```

### 2. Tools
**Purpose:** Functions AI can invoke

**Examples:**
- Query database
- Call external API
- Process files
- Execute commands

**Definition:**
```json
{
  "tools": [
    {
      "name": "query_database",
      "description": "Execute SQL query on customer database",
      "inputSchema": {
        "type": "object",
        "properties": {
          "query": {"type": "string"}
        },
        "required": ["query"]
      }
    }
  ]
}
```

### 3. Prompts
**Purpose:** Reusable prompt templates

**Examples:**
- Common task patterns
- Domain-specific workflows
- Best practice templates

**Definition:**
```json
{
  "prompts": [
    {
      "name": "analyze_customer",
      "description": "Analyze customer behavior and generate insights",
      "arguments": [
        {
          "name": "customer_id",
          "description": "Customer identifier",
          "required": true
        }
      ]
    }
  ]
}
```

## Building MCP Servers

### Python Server Example
```python
from mcp import Server, Tool, Resource

server = Server("customer-data")

@server.resource("customer://")
async def get_customer(uri: str):
    """Expose customer data as resources"""
    customer_id = uri.split("://")[1]
    return {
        "uri": uri,
        "mimeType": "application/json",
        "text": json.dumps(get_customer_data(customer_id))
    }

@server.tool()
async def query_customers(
    filters: dict
) -> list:
    """Query customer database"""
    return database.query("customers", filters)

@server.prompt()
async def customer_analysis(customer_id: str):
    """Generate customer analysis prompt"""
    return {
        "messages": [
            {
                "role": "user",
                "content": f"Analyze customer {customer_id} behavior and provide insights"
            }
        ]
    }

if __name__ == "__main__":
    server.run()
```

### TypeScript Server Example
```typescript
import { Server } from "@modelcontextprotocol/sdk/server/index.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";

const server = new Server({
  name: "github-server",
  version: "1.0.0"
}, {
  capabilities: {
    resources: {},
    tools: {},
    prompts: {}
  }
});

server.setRequestHandler(ListResourcesRequestSchema, async () => {
  return {
    resources: [
      {
        uri: "github://issues",
        name: "GitHub Issues",
        mimeType: "application/json"
      }
    ]
  };
});

server.setRequestHandler(ListToolsRequestSchema, async () => {
  return {
    tools: [
      {
        name: "create_issue",
        description: "Create a new GitHub issue",
        inputSchema: {
          type: "object",
          properties: {
            title: { type: "string" },
            body: { type: "string" }
          }
        }
      }
    ]
  };
});

const transport = new StdioServerTransport();
await server.connect(transport);
```

## Common MCP Servers

### Official Servers (by Anthropic)
- **GitHub** - Issues, PRs, repos
- **Slack** - Messages, channels
- **Google Drive** - Files, docs
- **PostgreSQL** - Database queries
- **Puppeteer** - Web scraping
- **Git** - Repository operations
- **Stripe** - Payment data

### Installing Official Servers
```bash
# Via npm
npx @modelcontextprotocol/server-github

# Via Docker
docker run mcp-postgres-server

# Via Python
pip install mcp-server-slack
python -m mcp_server_slack
```

## Client Integration

### Claude Desktop Configuration
```json
{
  "mcpServers": {
    "github": {
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-github"],
      "env": {
        "GITHUB_TOKEN": "your-token"
      }
    },
    "postgres": {
      "command": "docker",
      "args": ["run", "mcp-postgres-server"],
      "env": {
        "DATABASE_URL": "postgresql://..."
      }
    }
  }
}
```

### Claude SDK Integration
```python
from anthropic import Anthropic

client = Anthropic()

response = client.messages.create(
    model="claude-sonnet-4-5",
    mcp_servers={
        "github": {
            "command": "npx",
            "args": ["-y", "@modelcontextprotocol/server-github"]
        }
    },
    messages=[{
        "role": "user",
        "content": "List my GitHub issues"
    }]
)
```

## Security Best Practices

### Authentication
```python
# OAuth 2.0 with Resource Indicators (RFC 8707)
server = Server(
    "secure-api",
    auth_type="oauth2",
    scopes=["read:data", "write:data"]
)

@server.tool(required_scope="write:data")
async def update_record(record_id: str, data: dict):
    # Only callable with write permissions
    pass
```

### Input Validation
```python
@server.tool()
async def execute_query(query: str):
    # Validate to prevent injection
    if not is_safe_query(query):
        raise ValueError("Unsafe query detected")

    # Sanitize inputs
    safe_query = sanitize_sql(query)
    return database.execute(safe_query)
```

### Rate Limiting
```python
from functools import lru_cache
from time import time

@server.tool()
@rate_limit(calls=10, period=60)  # 10 calls per minute
async def expensive_operation():
    pass
```

### Audit Logging
```python
@server.tool()
async def sensitive_operation(data: dict):
    audit_log.write({
        "timestamp": datetime.now(),
        "operation": "sensitive_operation",
        "user": current_user(),
        "data": data
    })
    return process(data)
```

## Advanced Patterns

### Multi-Source Aggregation
```python
@server.resource("aggregated://customer")
async def aggregate_customer_data(customer_id: str):
    """Combine data from multiple sources"""
    crm_data = await crm_server.get_resource(f"crm://{customer_id}")
    support_data = await support_server.get_resource(f"support://{customer_id}")
    analytics_data = await analytics_server.get_resource(f"analytics://{customer_id}")

    return {
        "uri": f"aggregated://customer/{customer_id}",
        "data": {
            **crm_data,
            **support_data,
            **analytics_data
        }
    }
```

### Caching Layer
```python
from functools import lru_cache

@server.resource("cached://")
@lru_cache(maxsize=1000)
async def cached_resource(uri: str):
    """Cache frequently accessed resources"""
    return await expensive_fetch(uri)
```

### Streaming Large Data
```python
@server.tool()
async def stream_large_dataset(query: str):
    """Stream results for large datasets"""
    async for chunk in database.stream(query):
        yield chunk
```

## Monitoring & Observability

### Metrics Collection
```python
from prometheus_client import Counter, Histogram

tool_calls = Counter('mcp_tool_calls', 'Tool invocations', ['tool_name'])
latency = Histogram('mcp_latency', 'Operation latency')

@server.tool()
@latency.time()
async def monitored_tool():
    tool_calls.labels(tool_name='monitored_tool').inc()
    # Tool implementation
```

### Error Tracking
```python
import logging

logger = logging.getLogger("mcp_server")

@server.tool()
async def error_tracked_tool():
    try:
        return await risky_operation()
    except Exception as e:
        logger.error(f"Tool failed: {e}", exc_info=True)
        raise
```

## Testing MCP Servers

### Unit Testing
```python
import pytest
from mcp.testing import MockServer

@pytest.mark.asyncio
async def test_customer_tool():
    server = MockServer()
    result = await server.call_tool("get_customer", {"id": "123"})
    assert result["customer_id"] == "123"
```

### Integration Testing
```python
@pytest.mark.asyncio
async def test_full_workflow():
    # Start test server
    async with TestMCPServer() as server:
        # Test resource access
        resource = await server.get_resource("test://data")
        assert resource is not None

        # Test tool execution
        result = await server.call_tool("process_data", {"input": "test"})
        assert result["success"] == True
```

## Decision Framework

**Build MCP Server when:**
- Creating reusable data/tool integration
- Want AI agents to access your data
- Need standardized interface across frameworks
- Building for ecosystem (others can use your server)

**Use existing MCP Server when:**
- Connecting to GitHub, Slack, Drive, Postgres, etc.
- Standard data sources with official servers
- Prototyping quickly

## Resources

**Official:**
- Specification: https://modelcontextprotocol.io/specification
- GitHub: https://github.com/modelcontextprotocol
- Server Registry: https://github.com/modelcontextprotocol/servers

**SDKs:**
- Python: `pip install mcp`
- TypeScript: `npm install @modelcontextprotocol/sdk`

---

*MCP is the universal standard for AI-to-data integration in 2025 and beyond.*

Overview

This skill teaches how to design and implement Model Context Protocol (MCP) servers to standardize AI-to-data and AI-to-tool integrations. It focuses on the three MCP capabilities—resources, tools, and prompts—plus security, observability, and testing patterns for production-ready servers. You’ll get practical guidance for Python and TypeScript servers, plus decision criteria for when to build versus reuse servers.

How this skill works

An MCP server exposes resources (readable data), tools (callable functions), and prompts (reusable templates) over a JSON-RPC transport so any compliant agent can access them. Servers register resource handlers, tool handlers with input schemas and scopes, and prompt templates; clients discover capabilities and call methods to read resources, invoke tools, or run prompts. Production patterns include auth, input validation, rate limiting, caching, streaming, logging, and metrics.

When to use it

  • You need a reusable, vendor-agnostic integration for AI agents to access your data or services.
  • Multiple agent implementations must interact with the same data sources without bespoke adapters.
  • You want a standardized interface for third parties to call domain tools securely.
  • Prototyping AI workflows quickly by reusing an existing MCP server (GitHub, Slack, Postgres).

Best practices

  • Define clear resource URIs and mimeTypes to let agents fetch the right format.
  • Use JSON Schema for tool inputs and validate/sanitize every call to prevent injection.
  • Implement OAuth2 scopes, enforce required_scope per tool, and rotate credentials.
  • Add rate limiting, caching, and streaming for large datasets to protect backend systems.
  • Instrument tools with metrics and audit logs for observability and post-incident review.
  • Write unit and integration tests with mock MCP transports to validate workflows.

Example use cases

  • Expose customer records and analytics as resources and a query tool for agent-driven support tickets.
  • Create a GitHub MCP server that lists issues, creates PRs, and provisions CI jobs.
  • Aggregate data from CRM, support, and analytics into an aggregated:// resource for holistic insights.
  • Build a Slack MCP server that surfaces channels and lets agents post notifications via a tool.
  • Provide a streaming tool to let agents process large query results without loading everything in memory.

FAQ

When should I build a custom MCP server versus reuse an official one?

Build when you need reusable, domain-specific access or custom business logic; reuse official servers for common platforms (GitHub, Slack, Drive, Postgres) to speed up prototyping.

How do I secure tool invocations?

Use OAuth2 with scopes, validate input schemas, enforce required_scope on tools, add rate limits, and record audit logs for sensitive operations.