home / skills / dkyazzentwatwa / chatgpt-skills / sentiment-analyzer
This skill analyzes text sentiment with confidence scores, emotions, and trend visuals to help you gauge customer feedback quickly.
npx playbooks add skill dkyazzentwatwa/chatgpt-skills --skill sentiment-analyzerReview the files below or copy the command above to add this skill to your agents.
---
name: sentiment-analyzer
description: Analyze text sentiment (positive/negative/neutral) with confidence scores, emotion detection, and visualization. Supports single text, CSV batch, and trend analysis.
---
# Sentiment Analyzer
Analyze the sentiment of text content with detailed scoring, emotion detection, and visualization capabilities. Process single texts, CSV files, or track sentiment trends over time.
## Quick Start
```python
from scripts.sentiment_analyzer import SentimentAnalyzer
# Analyze single text
analyzer = SentimentAnalyzer()
result = analyzer.analyze("I love this product! It's amazing.")
print(f"Sentiment: {result['sentiment']} ({result['score']:.2f})")
# Batch analyze CSV
results = analyzer.analyze_csv("reviews.csv", text_column="review")
analyzer.plot_distribution("sentiment_dist.png")
```
## Features
- **Sentiment Classification**: Positive, negative, neutral with confidence
- **Polarity Scoring**: -1.0 (negative) to +1.0 (positive)
- **Subjectivity Detection**: Objective vs subjective content
- **Emotion Detection**: Joy, anger, sadness, fear, surprise
- **Batch Processing**: Analyze CSV files with any text column
- **Trend Analysis**: Track sentiment over time
- **Visualizations**: Distribution plots, trend charts, word clouds
## API Reference
### Initialization
```python
analyzer = SentimentAnalyzer()
```
### Single Text Analysis
```python
result = analyzer.analyze("This is great!")
# Returns:
# {
# 'text': 'This is great!',
# 'sentiment': 'positive', # positive, negative, neutral
# 'score': 0.85, # -1.0 to 1.0
# 'confidence': 0.92, # 0.0 to 1.0
# 'subjectivity': 0.75, # 0.0 (objective) to 1.0 (subjective)
# 'emotions': {'joy': 0.8, 'anger': 0.0, ...}
# }
```
### Batch Analysis
```python
# From list
texts = ["Great product!", "Terrible service.", "It's okay."]
results = analyzer.analyze_batch(texts)
# From CSV
results = analyzer.analyze_csv(
"reviews.csv",
text_column="review_text",
output="results.csv"
)
```
### Trend Analysis
```python
# Analyze sentiment over time
results = analyzer.analyze_csv(
"posts.csv",
text_column="content",
date_column="posted_at"
)
analyzer.plot_trend("sentiment_trend.png")
```
### Visualizations
```python
# Sentiment distribution
analyzer.plot_distribution("distribution.png")
# Sentiment over time
analyzer.plot_trend("trend.png")
# Word cloud by sentiment
analyzer.plot_wordcloud("positive", "positive_words.png")
```
## CLI Usage
```bash
# Analyze single text
python sentiment_analyzer.py --text "I love this product!"
# Analyze file
python sentiment_analyzer.py --input reviews.csv --column review --output results.csv
# With visualization
python sentiment_analyzer.py --input reviews.csv --column text --plot distribution.png
# Trend analysis
python sentiment_analyzer.py --input posts.csv --column content --date posted_at --trend trend.png
```
### CLI Arguments
| Argument | Description | Default |
|----------|-------------|---------|
| `--text` | Single text to analyze | - |
| `--input` | Input CSV file | - |
| `--column` | Text column name | `text` |
| `--date` | Date column for trends | - |
| `--output` | Output CSV file | - |
| `--plot` | Save distribution plot | - |
| `--trend` | Save trend plot | - |
| `--format` | Output format (json, csv) | `json` |
## Examples
### Product Review Analysis
```python
analyzer = SentimentAnalyzer()
results = analyzer.analyze_csv("amazon_reviews.csv", text_column="review")
# Summary statistics
positive = sum(1 for r in results if r['sentiment'] == 'positive')
negative = sum(1 for r in results if r['sentiment'] == 'negative')
print(f"Positive: {positive}, Negative: {negative}")
# Average sentiment score
avg_score = sum(r['score'] for r in results) / len(results)
print(f"Average sentiment: {avg_score:.2f}")
```
### Social Media Monitoring
```python
analyzer = SentimentAnalyzer()
# Analyze tweets with timestamps
results = analyzer.analyze_csv(
"tweets.csv",
text_column="tweet_text",
date_column="created_at"
)
# Plot sentiment trend
analyzer.plot_trend("twitter_sentiment.png", title="Brand Sentiment Over Time")
```
### Customer Feedback Categorization
```python
analyzer = SentimentAnalyzer()
feedback = [
"Your support team was incredibly helpful!",
"The product broke after one day.",
"Shipping was on time.",
"I'm extremely disappointed with the quality.",
"It works as expected, nothing special."
]
for text in feedback:
result = analyzer.analyze(text)
print(f"{result['sentiment'].upper():8} ({result['score']:+.2f}): {text[:50]}")
```
## Output Format
### JSON Output
```json
{
"text": "I love this product!",
"sentiment": "positive",
"score": 0.85,
"confidence": 0.92,
"subjectivity": 0.75,
"emotions": {
"joy": 0.82,
"anger": 0.02,
"sadness": 0.01,
"fear": 0.03,
"surprise": 0.12
}
}
```
### CSV Output
| text | sentiment | score | confidence | subjectivity |
|------|-----------|-------|------------|--------------|
| Great product! | positive | 0.85 | 0.91 | 0.80 |
| Terrible... | negative | -0.72 | 0.88 | 0.65 |
## Dependencies
```
textblob>=0.17.0
pandas>=2.0.0
matplotlib>=3.7.0
```
## Limitations
- English language optimized (other languages may have reduced accuracy)
- Sarcasm and irony may not be detected accurately
- Context-dependent sentiment may be missed
- Short texts (<5 words) have lower confidence
This skill analyzes text sentiment and emotions, returning classification (positive/negative/neutral), polarity scores, confidence, and subjectivity. It supports single-text queries, CSV batch processing, and time-series trend analysis with built-in visualizations. Outputs include JSON or CSV rows and plots for distribution, trends, and word clouds.
The analyzer computes polarity (-1.0 to +1.0), confidence, and subjectivity for each text, then maps polarity to a sentiment label. It also runs an emotion detector that scores common emotions (joy, anger, sadness, fear, surprise). For CSV inputs it processes a specified text column and optional date column to produce row-level results and aggregate trend data, and it can save charts to image files.
Which languages are supported?
The analyzer is optimized for English; accuracy for other languages is reduced.
How are short texts handled?
Short texts (<5 words) produce lower confidence scores; include more context when possible.
Can it detect sarcasm or irony?
Not reliably. Sarcasm and subtle irony remain common failure modes and should be handled via manual review.