home / skills / dkyazzentwatwa / chatgpt-skills / roi-calculator
This skill calculates ROI across marketing, investments, and break-even scenarios, helping you compare options and plan smarter business decisions.
npx playbooks add skill dkyazzentwatwa/chatgpt-skills --skill roi-calculatorReview the files below or copy the command above to add this skill to your agents.
---
name: roi-calculator
description: Calculate ROI for marketing campaigns, investments, and business decisions. Includes break-even analysis, payback period, and comparative ROI.
---
# ROI Calculator
Comprehensive ROI calculations for marketing, investments, and business decisions.
## Features
- **Simple ROI**: Basic return on investment calculation
- **Marketing ROI**: Campaign performance with attribution
- **Investment ROI**: Time-adjusted returns with CAGR
- **Break-Even Analysis**: Find profit threshold
- **Payback Period**: Time to recover investment
- **Comparative Analysis**: Compare multiple options
- **What-If Scenarios**: Sensitivity analysis
## Quick Start
```python
from roi_calculator import ROICalculator
calc = ROICalculator()
# Simple ROI
roi = calc.simple_roi(investment=10000, return_value=15000)
print(f"ROI: {roi['roi_percent']}%")
# Marketing ROI
marketing = calc.marketing_roi(
ad_spend=5000,
revenue_generated=25000,
cost_of_goods=10000
)
print(f"Marketing ROI: {marketing['roi_percent']}%")
# Break-even analysis
breakeven = calc.break_even(
fixed_costs=50000,
price_per_unit=100,
variable_cost_per_unit=60
)
print(f"Break-even units: {breakeven['units']}")
```
## CLI Usage
```bash
# Simple ROI
python roi_calculator.py --investment 10000 --return 15000
# Marketing campaign ROI
python roi_calculator.py --marketing --spend 5000 --revenue 25000 --cogs 10000
# Break-even analysis
python roi_calculator.py --breakeven --fixed 50000 --price 100 --variable 60
# Investment with time (CAGR)
python roi_calculator.py --investment 10000 --return 20000 --years 5
# Payback period
python roi_calculator.py --payback --investment 100000 --annual-return 25000
# Compare multiple investments
python roi_calculator.py --compare investments.csv
```
## API Reference
### ROICalculator Class
```python
class ROICalculator:
def __init__(self)
# Basic ROI
def simple_roi(self, investment: float, return_value: float) -> Dict
def net_roi(self, investment: float, gain: float, costs: float = 0) -> Dict
# Marketing ROI
def marketing_roi(self, ad_spend: float, revenue_generated: float,
cost_of_goods: float = 0) -> Dict
def campaign_roi(self, campaigns: List[Dict]) -> pd.DataFrame
def roas(self, ad_spend: float, revenue: float) -> Dict # Return on Ad Spend
# Investment ROI
def investment_roi(self, initial: float, final: float, years: float) -> Dict
def cagr(self, initial: float, final: float, years: float) -> float
def total_return(self, initial: float, final: float, dividends: float = 0) -> Dict
# Break-Even Analysis
def break_even(self, fixed_costs: float, price_per_unit: float,
variable_cost_per_unit: float) -> Dict
def break_even_revenue(self, fixed_costs: float, contribution_margin_ratio: float) -> Dict
# Payback Period
def payback_period(self, investment: float, annual_cash_flow: float) -> Dict
def payback_period_uneven(self, investment: float, cash_flows: List[float]) -> Dict
# Comparative Analysis
def compare_investments(self, investments: List[Dict]) -> pd.DataFrame
def rank_by_roi(self, investments: List[Dict]) -> List[Dict]
# Sensitivity Analysis
def sensitivity_analysis(self, base_case: Dict, variables: Dict) -> pd.DataFrame
def scenario_analysis(self, scenarios: List[Dict]) -> pd.DataFrame
# Reporting
def generate_report(self, analysis: Dict, output: str) -> str
```
## ROI Calculations
### Simple ROI
```python
result = calc.simple_roi(investment=10000, return_value=15000)
# Returns:
# {
# "investment": 10000,
# "return_value": 15000,
# "gain": 5000,
# "roi_percent": 50.0,
# "roi_ratio": 0.5
# }
```
### Net ROI (with additional costs)
```python
result = calc.net_roi(
investment=10000,
gain=8000,
costs=2000 # Additional costs
)
# Returns:
# {
# "investment": 10000,
# "gross_gain": 8000,
# "costs": 2000,
# "net_gain": 6000,
# "roi_percent": 60.0
# }
```
## Marketing ROI
### Campaign ROI
```python
result = calc.marketing_roi(
ad_spend=5000,
revenue_generated=25000,
cost_of_goods=10000
)
# Returns:
# {
# "ad_spend": 5000,
# "revenue": 25000,
# "cost_of_goods": 10000,
# "gross_profit": 15000,
# "net_profit": 10000, # After ad spend
# "roi_percent": 200.0,
# "roas": 5.0 # $5 revenue per $1 ad spend
# }
```
### Return on Ad Spend (ROAS)
```python
result = calc.roas(ad_spend=1000, revenue=4000)
# Returns:
# {
# "ad_spend": 1000,
# "revenue": 4000,
# "roas": 4.0,
# "roas_percent": 400.0
# }
```
### Multi-Campaign Comparison
```python
campaigns = [
{"name": "Facebook", "spend": 2000, "revenue": 8000, "cogs": 3000},
{"name": "Google", "spend": 3000, "revenue": 15000, "cogs": 6000},
{"name": "Email", "spend": 500, "revenue": 3000, "cogs": 1000}
]
results = calc.campaign_roi(campaigns)
# Returns DataFrame with ROI for each campaign
```
## Investment ROI
### Time-Adjusted ROI with CAGR
```python
result = calc.investment_roi(
initial=10000,
final=20000,
years=5
)
# Returns:
# {
# "initial": 10000,
# "final": 20000,
# "total_gain": 10000,
# "total_roi_percent": 100.0,
# "cagr_percent": 14.87, # Compound Annual Growth Rate
# "years": 5
# }
```
### Total Return with Dividends
```python
result = calc.total_return(
initial=10000,
final=12000,
dividends=1500
)
# Returns:
# {
# "initial": 10000,
# "final": 12000,
# "capital_gain": 2000,
# "dividends": 1500,
# "total_return": 3500,
# "total_return_percent": 35.0
# }
```
## Break-Even Analysis
### Unit Break-Even
```python
result = calc.break_even(
fixed_costs=50000,
price_per_unit=100,
variable_cost_per_unit=60
)
# Returns:
# {
# "fixed_costs": 50000,
# "price_per_unit": 100,
# "variable_cost_per_unit": 60,
# "contribution_margin": 40,
# "contribution_margin_ratio": 0.4,
# "break_even_units": 1250,
# "break_even_revenue": 125000
# }
```
### Revenue Break-Even
```python
result = calc.break_even_revenue(
fixed_costs=50000,
contribution_margin_ratio=0.4 # 40% margin
)
# Returns:
# {
# "fixed_costs": 50000,
# "contribution_margin_ratio": 0.4,
# "break_even_revenue": 125000
# }
```
## Payback Period
### Simple Payback
```python
result = calc.payback_period(
investment=100000,
annual_cash_flow=25000
)
# Returns:
# {
# "investment": 100000,
# "annual_cash_flow": 25000,
# "payback_years": 4.0,
# "payback_months": 48
# }
```
### Uneven Cash Flows
```python
result = calc.payback_period_uneven(
investment=100000,
cash_flows=[20000, 30000, 40000, 35000, 25000] # Per year
)
# Returns:
# {
# "investment": 100000,
# "payback_years": 2.75, # Recovered in year 3
# "cumulative_flows": [20000, 50000, 90000, 125000, 150000]
# }
```
## Comparative Analysis
### Compare Multiple Investments
```python
investments = [
{"name": "Project A", "investment": 50000, "return": 75000, "years": 2},
{"name": "Project B", "investment": 30000, "return": 48000, "years": 3},
{"name": "Project C", "investment": 100000, "return": 180000, "years": 5}
]
comparison = calc.compare_investments(investments)
# Returns DataFrame:
# name | investment | return | roi% | cagr% | payback
# Project A | 50000 | 75000 | 50.0 | 22.5 | 1.33
# Project B | 30000 | 48000 | 60.0 | 17.0 | 1.88
# Project C | 100000 | 180000 | 80.0 | 12.5 | 2.78
```
### Rank by ROI
```python
ranked = calc.rank_by_roi(investments)
# Returns investments sorted by ROI percentage
```
## Sensitivity Analysis
### Variable Sensitivity
```python
base_case = {
"fixed_costs": 50000,
"price_per_unit": 100,
"variable_cost_per_unit": 60,
"units_sold": 2000
}
# Test impact of price changes
sensitivity = calc.sensitivity_analysis(
base_case=base_case,
variables={
"price_per_unit": [80, 90, 100, 110, 120],
"units_sold": [1500, 1750, 2000, 2250, 2500]
}
)
# Returns DataFrame showing profit at each combination
```
### Scenario Analysis
```python
scenarios = [
{"name": "Pessimistic", "units": 1500, "price": 90},
{"name": "Base", "units": 2000, "price": 100},
{"name": "Optimistic", "units": 2500, "price": 110}
]
results = calc.scenario_analysis(scenarios)
```
## Example Workflows
### Marketing Campaign Analysis
```python
calc = ROICalculator()
# Analyze Q4 campaigns
campaigns = [
{"name": "Black Friday Email", "spend": 2000, "revenue": 45000, "cogs": 20000},
{"name": "Holiday Facebook", "spend": 8000, "revenue": 35000, "cogs": 14000},
{"name": "Google Shopping", "spend": 5000, "revenue": 28000, "cogs": 12000}
]
results = calc.campaign_roi(campaigns)
print(results.sort_values("roi_percent", ascending=False))
# Find best performing campaign
best = results.loc[results["roi_percent"].idxmax()]
print(f"Best ROI: {best['name']} at {best['roi_percent']:.1f}%")
```
### Business Investment Decision
```python
calc = ROICalculator()
# Compare expansion options
options = [
{"name": "New Location", "investment": 200000, "annual_return": 45000},
{"name": "Equipment Upgrade", "investment": 75000, "annual_return": 20000},
{"name": "Digital Marketing", "investment": 30000, "annual_return": 12000}
]
for opt in options:
payback = calc.payback_period(opt["investment"], opt["annual_return"])
roi = calc.simple_roi(opt["investment"], opt["investment"] + opt["annual_return"] * 5)
print(f"{opt['name']}: Payback={payback['payback_years']:.1f}yr, 5yr ROI={roi['roi_percent']:.1f}%")
```
### Pricing Strategy Analysis
```python
calc = ROICalculator()
# Break-even at different price points
fixed_costs = 100000
variable_cost = 25
for price in [40, 50, 60, 75, 100]:
be = calc.break_even(fixed_costs, price, variable_cost)
print(f"Price ${price}: Break-even at {be['break_even_units']:,} units (${be['break_even_revenue']:,.0f})")
```
## Dependencies
- pandas>=2.0.0
- numpy>=1.24.0
This skill provides a comprehensive ROI calculator for marketing campaigns, investments, and business decisions. It bundles simple ROI, marketing ROAS, time-adjusted investment returns (CAGR), break-even analysis, payback period, and comparative and sensitivity analyses into a single Python interface. The tool is designed for analysts, marketers, and business owners who need repeatable, auditable ROI calculations and side-by-side comparisons.
You call methods on the ROICalculator class to compute metrics: simple_roi and net_roi for basic returns, marketing_roi and roas for campaign performance, investment_roi and cagr for time-adjusted returns, break_even and break_even_revenue for threshold analysis, and payback_period (including uneven cash flows) to estimate recovery time. There are batch helpers for campaign and investment comparisons, plus sensitivity_analysis and scenario_analysis to test assumptions. Outputs are numeric dictionaries or pandas DataFrames suitable for reporting.
Can I compare multiple campaigns or investments at once?
Yes. Use campaign_roi or compare_investments to get a DataFrame with ROI, CAGR, and payback for each item.
Does the tool account for time when measuring investment returns?
Yes. investment_roi returns total ROI and CAGR so you can compare returns across different time horizons.